Билл Фрэнкс - Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики

Тут можно читать онлайн Билл Фрэнкс - Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - бесплатно ознакомительный отрывок. Жанр: Личные финансы, издательство Array Литагент «Альпина», год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Альпина»
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-9614-4132-1
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Билл Фрэнкс - Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики краткое содержание

Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - описание и краткое содержание, автор Билл Фрэнкс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Еще несколько лет назад руководители многих организаций, чей бизнес генерирует большие объемы операционных данных, сомневались в ценности подхода Big Data. Сегодня те из них, кто продолжает сомневаться, упускают непрерывно растущие возможности этого подхода, повышая риск потери доли рынка и перехода в разряд отстающих и устаревающих. Но с чего начать, если вы хотите вывести свою организацию на новый научно-технологический уровень, к принятию решений с использованием Big Data? Ответ на это дает Билл Фрэнкс, директор по аналитике компании Teradata и преподаватель Международного института аналитики, за плечами которого – более чем 20-летний опыт работы в крупных аналитических проектах реального бизнеса. «Революция в аналитике» – это пошаговое практическое руководство по внедрению операционной аналитики и автоматизации принятия решений. Специалисты по аналитике, ИТ и все, кто хочет сделать свою организацию успешнее на основе подхода Big Data, по достоинству оценят работу Фрэнкса.

Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - читать онлайн бесплатно ознакомительный отрывок

Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Билл Фрэнкс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Во втором случае вице-президент по ИТ приходит на заседание комитета вместе с партнером по бизнесу, также в ранге вице-президента. Совместно они сообщают следующее: «Мы собираемся сделать так, чтобы наши существующие мощности могли удовлетворять спрос потребителей в течение следующих пяти лет, что позволит нам отсрочить строительство нескольких новых электростанций. Мы планируем добиться этого, стимулируя клиентов изменить свои привычные модели потребления, чтобы мы могли снизить уровни пикового спроса путем анализа сенсорных данных от наших умных электросетей. Разумеется, сбор, хранение и анализ этих данных обойдутся нам в несколько миллионов долларов. Но эти расходы будут с лихвой компенсированы теми десятками миллионов долларов, которые, как мы установили, можно сэкономить за счет отсрочки строительства новых электростанций. К тому же мы сможем выполнить много другой аналитики, как только получим данные от умных электросетей».

Первое предложение свелось к затратам и данным, исходило из интересов ИТ-службы и не очень убеждало, несмотря на обещание покрыть расходы. Второе предложение исходило из интересов бизнеса при поддержке ИТ-службы и сосредоточивалось на экономической ценности сбора данных, а не на затратах. Как вы думаете, какое предложение руководство компании сочтет более привлекательным?

Сосредоточьтесь на доходах, а не на затратах

Предыдущие примеры иллюстрируют два подхода к запросу на финансирование. Главное различие между ними состоит в том, что первый просто пытается оправдать себя, делая акцент на нейтральных затратах, тогда как второй стремится извлечь значительную экономическую выгоду. К сожалению, многие заявки на инвестирование, связанные с аналитикой и технологиями, уделяют слишком большое внимание затратам и способам компенсации этих затрат. Полезнее же затраты просто представить в качестве части высокоэффективного решения, как это показано в таблице 4.1.

Отчасти такой акцент на затратах объясняется тем что в прошлом инвестиции в - фото 12

Отчасти такой акцент на затратах объясняется тем, что в прошлом инвестиции в технологии было принято обосновывать именно таким образом. Эти инвестиции нередко включали в себя огромную предоплату, которой обременяли широкий спектр производств, способных со временем компенсировать затраты. Например, в связи с огромной стоимостью больших ЭВМ в 1980-е гг. инвестиции в них ни за что бы не получили одобрения только ради удовлетворения нескольких аналитических потребностей. Для обоснования такой покупки ЭВМ должна была удовлетворять широкий спектр потребностей в масштабах всей организации.

Сегодня же инструменты и технологии зачастую относительно недороги, так что можно обойтись скромными инвестициями. Выгоды, достигнутые благодаря начальным инвестициям и начальному внедрению аналитики, могут быть использованы для того, чтобы обосновать дальнейшее финансирование. Инвестиции в аналитику больше не превращаются для организации в масштабные затраты, неподъемные для бизнеса. Благодаря сегодняшней гибкой структуре затрат нередко можно начать внедрение аналитики в гораздо меньшем масштабе, и зачастую на уровне бизнес-подразделения вполне можно выполнить простой анализ рентабельности.

Нацельтесь на факторы, определяющие различия, а не на поэтапные улучшения

Захватывающие новые концепции обычно привлекают больше внимания, чем улучшения уже существующих концепций. Это же верно и в случае аналитики. Если новые данные и новая аналитика могут быть использованы для решения новых проблем, будет гораздо легче привлечь внимание к бизнес-кейсу. Решение новых проблем при помощи новых данных зачастую обещает более весомую финансовую отдачу, чем при простом приспособлении существующих аналитических процессов к решению существующих проблем. Вместе с тем нередко можно разработать план, который предусматривает как краткосрочные поэтапные улучшения, так и долгосрочную конкурентную дифференциацию. Такая ситуация особенно благоприятна, поскольку обещает быстрый и наглядный прогресс в ходе достижения крупных долгосрочных преимуществ. Это будет победа сразу в двух измерениях.

Отметим одну из самых замечательных особенностей, связанных с появлением больших данных (см. вторую главу) и Аналитики 3.0 (см. первую главу), – возможности для применения аналитики расширяются и намного превзошли те, что были еще несколько лет назад. Обязательно отразите это при разработке своего бизнес-плана. Вдохновляющий мир больших данных и операционной аналитики открывает перед организациями широкие возможности для того, чтобы сосредоточиться на конкурентной дифференциации, и в то же время вносить поэтапные улучшения в существующие аналитические процессы. Как мы уже убедились, собираемым данным очень часто можно найти самое разное применение. Это означает, что, даже если кейс создан для решения одной-двух конкретных бизнес-проблем, в нем необходимо упомянуть и грядущие выгоды, которые могут появиться и в других областях, даже если пока что они расплывчаты и неопределенны. Процесс поиска новых ценностей называют еще «разговором с данными». Такой «разговор» способен привести к новым знаниям, идеям – и прибылям.

Конкурентная дифференциация обеспечивает поддержку

Сегодня часто можно использовать аналитику для того, чтобы с самого начала сделать организацию несхожей с другими. Даже если вы нацеливаетесь на поэтапные улучшения, постарайтесь обозначить конкурентные дифференциации на будущее.

Давайте рассмотрим следующий пример. Не будет ли интересно ресторанам или магазинам розничной торговли узнать, сколько людей посещают их каждый день и что это за люди? Могу побиться об заклад, что будет интересно, а помогут им данные о местоположении абонентов, создаваемые мобильными телефонами. Если провайдер сотовой связи хочет окупить затраты на хранение в операционных целях детализированных данных о местоположении абонентов, он может рассмотреть и такие альтернативные варианты их применения, как предоставление магазинам и ресторанам информации о потоке посетителей. Провайдер может даже взымать плату с ретейлеров за информацию о том, сколько человек ежедневно проходят или проезжают мимо их магазинов.

Путем сопоставления данных о местоположении с демографическими данными и данными об использовании мобильных телефонов можно предоставлять подобную информацию и с разбивкой людей по категориям. Предложение такой аналитической услуги может стать для провайдера конкурентной дифференциацией, создать новый поток доходности и окупить затраты на сбор для себя операционных данных. Обратите внимание на то, что я не предлагаю провайдерам разглашать любую информацию о любом индивидуальном абоненте. Это было бы нарушением неприкосновенности частной жизни, о чем мы подробно поговорим в шестой главе. Провайдер будет предоставлять агрегированные сведения, например такие: ежедневно мимо дома № 124 на Мейн-стрит в среднем проходят 200 человек, из которых 30 % имеют годовой доход свыше $100 000.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Билл Фрэнкс читать все книги автора по порядку

Билл Фрэнкс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики отзывы


Отзывы читателей о книге Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики, автор: Билл Фрэнкс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x