Билл Фрэнкс - Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики

Тут можно читать онлайн Билл Фрэнкс - Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - бесплатно ознакомительный отрывок. Жанр: Личные финансы, издательство Array Литагент «Альпина», год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Альпина»
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-9614-4132-1
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Билл Фрэнкс - Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики краткое содержание

Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - описание и краткое содержание, автор Билл Фрэнкс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Еще несколько лет назад руководители многих организаций, чей бизнес генерирует большие объемы операционных данных, сомневались в ценности подхода Big Data. Сегодня те из них, кто продолжает сомневаться, упускают непрерывно растущие возможности этого подхода, повышая риск потери доли рынка и перехода в разряд отстающих и устаревающих. Но с чего начать, если вы хотите вывести свою организацию на новый научно-технологический уровень, к принятию решений с использованием Big Data? Ответ на это дает Билл Фрэнкс, директор по аналитике компании Teradata и преподаватель Международного института аналитики, за плечами которого – более чем 20-летний опыт работы в крупных аналитических проектах реального бизнеса. «Революция в аналитике» – это пошаговое практическое руководство по внедрению операционной аналитики и автоматизации принятия решений. Специалисты по аналитике, ИТ и все, кто хочет сделать свою организацию успешнее на основе подхода Big Data, по достоинству оценят работу Фрэнкса.

Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - читать онлайн бесплатно ознакомительный отрывок

Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Билл Фрэнкс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Дайте свисток!

Чтобы преуспеть, аналитическая команда должна быть готова занять твердую позицию и «дать свисток». Подобно рефери на футбольном поле, специалисты-аналитики должны с уверенностью выдавать надежные рекомендации и отстаивать полученные результаты. Если вы сами не уверены в своих открытиях, то как в них может быть уверен кто-то другой?

Этим же советом может воспользоваться и аналитическая команда. Когда ее просят решить проблему, команда должна с уверенностью рекомендовать путь, ведущий к решению. Когда получены результаты, она должна с уверенностью представить и объяснить их, а также выявить их значение. И, наконец, команда должна занять твердую позицию и представить конкретные рекомендации в отношении дальнейших действий. Благодаря такому подходу аналитическая команда завоюет уважение и доверие к себе со стороны заказчиков.

Заказчики проектов не всегда соглашаются с рекомендациями аналитической команды и иногда решают выбрать другое направление. Они ведут себя как болельщики, которые считают, что рефери неправильно дал свисток. Однако аналитическая команда должна отстаивать свою точку зрения, ведь у заказчика голова и без того занята множеством разных вопросов. Чем доказательнее аналитическая команда сможет убедить заказчика в том, чтобы он перестал интерпретировать данные и результаты анализа, а доверил это ей, тем будет лучше.

Ложные стимулы обходятся дорого

Стимулы важны всегда. Когда организация превращает традиционную аналитику в операционную, стимулы, привязанные к правильным целям, приобретают еще более важное значение, поскольку при интеграции аналитики в операционный процесс неточное определение стимулов может сказаться на результате. Какова главная цель при создании аналитического процесса? Легкая интегрируемость? Или высокая производительность? Или стабильность? Или что-то еще?

Важно определять четкие цели для специалистов-аналитиков как в годовом исчислении, так и на уровне конкретных проектов. У проектов, направленных на обнаружение, иные цели и критерии успеха, чем у проектов по операционному внедрению сделанных открытий. Например, в первом случае для сотрудников требуются стимулы, поощряющие экспериментирование и поиск новых явлений. Делать это нужно эффективно и быстро выполнять прототипы. Тем же, кто занят операционализацией, требуются другие стимулы, поощряющие тщательную работу по оптимизации скорости и производительности процесса, а также по тестированию процесса для гарантии его стабильности. Разумеется, постановка правильных целей напрямую связана с темой управления, которую мы обсуждали в шестой главе.

Есть примеры реальных ситуаций, когда неправильные организационные стимулы в отношении аналитики ведут к огромным издержкам. Например, налоговое мошенничество является серьезной проблемой в Соединенных Штатах. Один из его самых распространенных видов состоит в том, что мошенники крадут чужой номер социального страхования, подают декларацию от имени этого человека и получают большой возврат налогов {84}. Сегодня это превратилось в многомиллиардный бизнес (если здесь применимо слово «бизнес») {85}. К сожалению, предлагаемые Службой внутренних доходов (Internal Revenue Service, IRS) стимулы скорее усугубляют проблему, чем решают ее {86}.

То, что я сейчас расскажу, уже является достоянием широкой общественности, поэтому я не разглашу никакой конфиденциальной информации. Встречаясь с сотрудниками IRS, я поинтересовался у них, каким образом мошенникам удается подавать совершенно фиктивные налоговые декларации, если у IRS имеются данные о доходах и налоговых платежах по каждому человеку, которые предоставляются работодателями, финансовыми учреждениями и другими источниками доходов. Если цифры в налоговой декларации не совпадают с этими сведениями, то фальшивые декларации легко выявить для проверки, разве нет? Оказывается, нет. Хотя сведения о доходах поступают от работодателей в начале года, они становятся доступными для анализа лишь спустя несколько месяцев, т. е. уже после проверки налоговых деклараций. По сути, на протяжении всего сезона налоговой отчетности IRS не может соотнести сведения о доходах и налоговых выплатах, предоставленные работодателями и самими налогоплательщиками, чтобы проверить декларации перед утверждением возврата налогов. Звучит дико, не так ли?

Хуже того, у IRS есть стимулы осуществлять возврат налогов в максимально сжатые сроки. Когда некто просит IRS вернуть деньги, она старается сделать это как можно быстрее. Ситуация не меняется даже несмотря на всеобщее понимание того, что мошенничество на миллиарды долларов происходит вследствие невыполнения углубленного анализа его причин. Главное – быстрее обслужить клиентов, и IRS достигает этой цели, что обходится налогоплательщикам в миллиарды долларов.

Усугубляет ситуацию то, что вполне надежный анализ с целью выявления мошенничества можно осуществить даже без наличия данных за текущий год. Например, возьмем мой случай: я работаю в одной и той же компании несколько лет, получаю примерно одинаковый годовой доход и живу в одном и том же штате. Если налоговая декларация от моего имени подается в другом штате с указанием другого работодателя и суммы доходов, которая существенно отличается от суммы доходов в прошлом, то это должно рассматриваться как предупреждающий знак. Существует масса исторических данных, позволяющих выявить потенциально мошеннические декларации, но эти данные либо мало, либо вообще не используются для анализа. Вместо этого быстрый возврат налогов имеет для IRS первостепенное значение.

Если бы IRS изменила свои стимулы и сбалансировала скорость выплат со временем, требуемым для элементарных проверок на предмет мошенничества, она бы уберегла массу денег. Поскольку процедура возврата налогов обычно занимает несколько дней, этого времени более чем достаточно для того, чтобы осуществить любой необходимый анализ до выплаты денег. Вместо этого аналитика сосредоточена на выявлении фиктивных деклараций уже после того , как выплаты были сделаны. Поэтому еще раз повторю: стимулы должны поощрять разумное использование аналитики, а не отказ от нее.

Подведем итоги

Наиболее важные положения этой главы:

• Сегодня ценность специалистов-аналитиков получила широкое признание. Вместо того чтобы спрашивать, нужны ли им вообще аналитические таланты, организации сейчас сосредоточиваются на том, как сорганизовать имеющихся у них аналитиков и распространить их влияние.

• Все специалисты-аналитики, как бы ни называлась их профессия, обладают одними и теми же основными чертами, многие из которых не имеют ничего общего с техническими умениями.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Билл Фрэнкс читать все книги автора по порядку

Билл Фрэнкс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики отзывы


Отзывы читателей о книге Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики, автор: Билл Фрэнкс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x