Саманта Клейнберг - Почему

Тут можно читать онлайн Саманта Клейнберг - Почему - бесплатно полную версию книги (целиком) без сокращений. Жанр: О бизнесе популярно, издательство Литагент МИФ без БК, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Саманта Клейнберг - Почему краткое содержание

Почему - описание и краткое содержание, автор Саманта Клейнберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Автор книги доступно рассказывает, что такое причинно-следственная связь, объясняет, почему мы часто ошибаемся в ее определении, на основе каких данных можно делать правильные выводы и принимать эффективные решения. Прочитав книгу, вы научитесь анализировать информацию и выявлять причинно-следственные связи, объяснять прошлое и предсказывать будущее.
Книга будет интересна аналитикам, философам, исследователям, медикам, экономистам, юристам, начинающим ученым, всем, кто имеет дело с массивами данных и хочет научиться критическому мышлению.
На русском языке публикуется впервые.

Почему - читать онлайн бесплатно полную версию (весь текст целиком)

Почему - читать книгу онлайн бесплатно, автор Саманта Клейнберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В табл. 3.1 показано, какой вид могут принимать данные. Фи-коэффициент для них составляет 0,81. Мы изначально смотрим, сосредоточено ли большинство измерений вдоль диагональной линии на таблице. Если значения в основном находятся в группах вождение/не-город и не-вождение/город, можно говорить о положительной корреляции.

Если аккумулируются вдоль другой диагонали, корреляция имеет такую же силу, но другой знак.

Таблица 3.1.Различные комбинации местонахождения и вождения

Однако на основе этих измерений не каждая сильная корреляция будет иметь - фото 8

Однако на основе этих измерений не каждая сильная корреляция будет иметь высокое значение. Применение коэффициента Пирсона предполагает, что это отношение линейно, а значит, если одна переменная (например, рост), увеличивается, другая (например, возраст) также увеличивается, причем с одинаковым темпом. Это не всегда справедливо, поскольку могут встречаться и более сложные, нелинейные отношения. К примеру, если из-за нехватки кофе человек становится вялым (и не способен показать хорошие результаты на экзамене), а избыток кофе его возбуждает (и тоже плохо влияет на результаты), то график, выстроенный на основе некоторых данных, может иметь вид, как на рис. 3.4. Здесь видно повышение балла в диапазоне от 0 до 5 чашек кофе, потом еще одно медленное падение. Хотя корреляция Пирсона для этого примера нулевая, данные показывают четкий паттерн.

Рис 34Нелинейное отношение r 0000 Подобный тип отношений показывает - фото 9

Рис. 3.4.Нелинейное отношение (r = 0,000)

Подобный тип отношений показывает неоднозначные результаты при многих методах причинных умозаключений. В последующих главах мы вернемся к этому. Его важно иметь в виду, поскольку он встречается в таких прикладных науках, как биомедицина (например, и недостаток, и передозировка витаминов могут иметь последствия для здоровья) и финансы (например, кривая Лаффера, которая показывает зависимость между доходами государства и динамикой налоговых ставок).

Аналогично, если вес детей всегда увеличивается с возрастом, но экспоненциально (дети растут, и их вес растет все сильнее), корреляция Пирсона будет ниже ожидаемой, так как она работает в линейных зависимостях. Это одна из опасностей, подстерегающая тех, кто бросает данные в «черный ящик» и просто принимает любые полученные результаты, не проводя дальнейших исследований. Поступив так, когда корреляция недооценивается или даже кажется равной нулю, мы упускаем потенциально интересные зависимости.

Это одна из причин, почему нельзя интерпретировать нулевую корреляцию (пирсоновскую или любую другую) как вообще незначимую (существуют и другие причины, например ошибки в измерениях или первичные данные, искажающие результаты). Еще одна важная причина заключается в том, что данные могут не быть репрезентативными с точки зрения исходного распределения. Если бы нам разрешили взглянуть на статистику смертей от гриппа, но предоставили только данные о количестве больных, поступивших в лечебные учреждения, и вызовов скорой помощи, мы наблюдали бы гораздо более высокий процент летальных исходов, чем в масштабах всего населения. Это происходит потому, что люди оказываются в стационаре, как правило, с более тяжелыми случаями или дополнительными заболеваниями (и с высокими шансами смерти от гриппа). Итак, мы снова сравниваем не все исходы, а только статистику для больных или обратившихся к врачам на фоне симптоматики гриппа.

Чтобы проиллюстрировать эту проблему в ограниченном диапазоне, возьмем, к примеру, две переменные: общий экзаменационный балл и часы, потраченные на подготовку. Однако вместо данных по всему спектру оценок за экзамен мы имеем только сведения о лицах, получивших общий балл за письменный и устный тест по математике выше 1400. На рис. 3.5 эта область показана серым цветом.

Рис 35Закрашенная область представляет ограниченный диапазон данных Согласно - фото 10

Рис. 3.5.Закрашенная область представляет ограниченный диапазон данных

Согласно этим гипотетическим показателям, студенты с высокими баллами представляют собой комбинацию как лиц с природной одаренностью (которые преуспевают, особо не утруждаясь), так и тех, кто получил лучшие оценки за счет интенсивных занятий. Если воспользоваться только данными из закрашенной области, мы не обнаружим никакой корреляции между переменными; но если применить информацию по всему спектру экзаменационных показателей, созависимость будет сильной (корреляция Пирсона оценки и упорных занятий для закрашенной области равна 0, а для всего набора данных – 0,85).

Оборотная сторона медали – это корреляции, которые мы порой находим между несвязанными переменными, опираясь только на следствия (то есть принимая во внимание только случаи, когда это следствие имеет место). К примеру, получение высокого экзаменационного балла и участие во множестве факультативных мероприятий обеспечивают прием в престижный университет. Значит, данные, взятые только в вузах, покажут корреляцию между высоким баллом и многочисленными факультативами, так как здесь эти показатели чаще всего в наличии.

Подобная тенденция отбора данных довольно типична. Возьмем, к примеру, сайты, опрашивающие посетителей насчет их политических взглядов. В интернете не получится отобрать участников опроса случайно в масштабах всего населения, а данные источников с сильным политическим уклоном искажены еще сильнее. Если посетители конкретной страницы активно поддерживают действующего президента, то результаты по ним, возможно, покажут, что рейтинг главы государства растет каждый раз, когда он произносит важную речь. Однако это показывает лишь то, что есть корреляция одобрения президента и произнесения им речей перед сторонниками (поскольку на вопросы отвечают представители всего населения). Мы рассмотрим и эту, и другие формы трендов (например, смещение по выживаемости) в главе 7и увидим, как они влияют на результаты анализа экспериментальных данных.

* * *

Важно помнить, что, помимо математических причин, по которым можно распознать ложные корреляции, есть еще наблюдение за данными, позволяющее найти ложные паттерны. Некоторые из когнитивных смещений, заставляющие нас видеть соотношение несвязанных факторов, также сходны с ошибкой отбора. К примеру, предвзятость подтверждения заставляет искать доказательства в пользу определенного убеждения. Иными словами, если вы верите, что лекарство вызывает некий побочный эффект, вы приметесь читать в интернете отзывы тех, кто уже принимал его и наблюдал это действие. Но таким образом вы игнорируете весь набор данных, не поддерживающих вашу гипотезу, вместо того чтобы искать свидетельства, которые, возможно, заставят ее переоценить. Предвзятость подтверждения также может заставить вас отказаться от свидетельств, противоречащих вашей гипотезе; вы можете предположить, что источник сведений ненадежен или что исследование основывалось на ошибочных экспериментальных методах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Саманта Клейнберг читать все книги автора по порядку

Саманта Клейнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Почему отзывы


Отзывы читателей о книге Почему, автор: Саманта Клейнберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x