Саманта Клейнберг - Почему
- Название:Почему
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2017
- Город:Москва
- ISBN:978-5-00100-593-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Саманта Клейнберг - Почему краткое содержание
Книга будет интересна аналитикам, философам, исследователям, медикам, экономистам, юристам, начинающим ученым, всем, кто имеет дело с массивами данных и хочет научиться критическому мышлению.
На русском языке публикуется впервые.
Почему - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Несмотря на проблемы с определением и выявлением причин, нельзя сказать, что это дело невозможное или безнадежное. Ответы не всегда бывают четкими и определенными, как того хотелось бы (увы, но вам не найти своеобразный «черный ящик», куда можно заложить данные и получить на выходе причины, причем абсолютно точные), и существенная доля нашей работы – просто выяснить, к какому подходу прибегнуть и когда.
Множественность взглядов привела к появлению нескольких более-менее состоятельных подходов, которые не похожи в действии и применимы в разных ситуациях. Если иметь в активе более одного из них и знать, как они дополняют друг друга, можно расширить набор методов оценки ситуации. Некоторые способы охватывают больше случаев, чем другие (или больше важных для вас ситуаций), однако стоит помнить: ни один из них не свободен от недостатков. В конечном счете, хотя поиск причин и труден, главная проблема заключается в безусловном нахождении причин с абсолютной достоверностью . Если допустить возможность ошибок и поставить цель точно сформулировать, что именно мы можем выяснить и когда, то можно расширить диапазон сценариев, реализуемых с помощью доступных методов, и суметь адекватно описать и подходы, и результаты.
В этой книге я постаралась отразить преимущества и ограничения, присущие различным подходам, но не составить методологические рекомендации, поскольку они не абсолютны. Одни подходы лучше работают с неполными данными, а другие предпочтительнее для ситуаций, в которых важнее временной график событий. Ответом, как правило, будет «это зависит от…» – увы, но с каузальностью дела почти всегда обстоят именно так.
Каузальное мышление занимает центральное место в науках, законности, медицине и других областях (в самом деле, трудно представить сферу, где бы можно было бы обойтись без причин). Но есть и обратная сторона: методы и язык, которые используются для описания причин, обретают излишне специализированный характер и узкоотраслевое звучание. Возможно, вы не считаете, что неврология и экономика имеют много общего или что информационные технологии затрагивают психологические вопросы; но это лишь некоторые из областей междисциплинарных трудов по причинности, и области эти всё ширятся. И все имеют единый исток – философию.
Как отыскать причины
Философы с давних пор ищут ответ на вопрос, что такое причина, хотя основные философские подходы к определению каузальности, как и вычислительные методы поиска причин на основе данных, которыми мы сегодня пользуемся, появились не ранее 70–80-х годов XX века. Неясно, будет ли когда-нибудь создана единая теория причинности, тем не менее важно постичь суть этого распространенного понятия, чтобы с б о льшим пониманием размышлять о нем и применять в общении. Любой прогресс в этой области будет иметь важные последствия для развития информационных технологий и других наук. Если, к примеру, каузальные взаимосвязи не единообразны, вероятно, понадобятся разные методы, чтобы их выявить и описать, а также многочисленные эксперименты, чтобы проверить интуитивные взгляды на причинность.
Со времен Юма главный вызов заключался в следующем: как отличить каузальные и некаузальные паттерны осуществления событий? В 60–70-х годах XX века появились три основных метода, построенные на трудах Юма. Следствие редко проистекает от воздействия единственной причины, поэтому Джон Мэки [21]разработал теорию, представляющую собой набор условий, которые совместно производят следствия. Эта теория позволяет лучше исключить некаузальные взаимосвязи, исходя из сложности причин [22]. Точно так же многие каузальные взаимосвязи включают в себя элемент случайности, когда причины просто с большей вероятностью вызывают соответствующие следствия. Причем необязательно, что подобное будет происходить каждый раз (согласно вероятностным подходам Патрика Суппеса [23]и др. [24]). Юм также заложил основы контрфактуального подхода, задача которого – дать определение причины, исходя из того, насколько иными могли бы стать следствия, если бы причина не имела места [25]. Например, благодаря кому-то была достигнута победа в игре, поскольку без усилий этого конкретного игрока победить не удалось бы ни за что.
Кажется, что у всех этих философских трудов нет ничего общего с вычислительными методами, но это не так. Для компьютерщиков этаким святым Граалем в сфере искусственного разума стала возможность автоматизировать человеческое мышление, а ключевым элементом оказалось нахождение причин и формулировка объяснений. Это используется и в робототехнике (роботам нужны модели мира, чтобы планировать действия и предсказывать их последствия), в рекламе (компания Amazon лучше формулирует рекомендации для целевой аудитории, если знает, что заставило вас кликнуть по клавише «купить прямо сейчас») и медицине (врачи отделения интенсивной терапии моментально узнают, почему состояние пациента внезапно изменилось). И все же для разработки алгоритмов (последовательности шагов по решению задачи) мы должны конкретизировать проблему. Чтобы создать программу для выявления причин, требуется их рабочее определение.
В 1980-х годах группа специалистов по информационным технологиям под руководством Джуды Перла [26]доказала, что философские теории, определяющие каузальные взаимосвязи в терминах вероятностей, можно представить графически, обеспечив одновременно визуальное изображение причинных связей и способ кодирования математических зависимостей между переменными. Что еще важнее, эксперты предложили методы построения графических моделей на основе предварительного знания и методов их выведения из имеющихся данных [27]. Эти работы породили множество новых вопросов. Можно ли определить взаимосвязь там, где запаздывание между причиной и следствием – величина переменная? Если сами взаимосвязи со временем изменяются, что мы можем узнать? Кроме того, компьютерщики разработали метод автоматизации поиска объяснений, а также методы тестирования объяснений для каждой модели.
В последние несколько десятилетий заметен существенный прогресс, но многие проблемы по-прежнему не решены – главным образом потому, что нашей жизнью все в большей степени правит информация. Однако вместо тщательно выверенных баз данных, собираемых исключительно в рамках научных исследований, мы имеем дело с громадным массивом неопределенных сведений, полученных в результате простых наблюдений.
Представим на первый взгляд несложную проблему: определить социальный статус людей по данным Facebook. Первая сложность заключается в том, что этой социальной сетью пользуется далеко не каждый, так что вы изучите лишь определенную группу, которая может не быть репрезентативной для населения в целом. Вторая: не все используют Facebook одинаково. Кто-то вообще не указывает статус отношений, кто-то лжет, а кто-то просто не обновляет профиль.
Читать дальшеИнтервал:
Закладка: