Саманта Клейнберг - Почему

Тут можно читать онлайн Саманта Клейнберг - Почему - бесплатно полную версию книги (целиком) без сокращений. Жанр: О бизнесе популярно, издательство Литагент МИФ без БК, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Саманта Клейнберг - Почему краткое содержание

Почему - описание и краткое содержание, автор Саманта Клейнберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Автор книги доступно рассказывает, что такое причинно-следственная связь, объясняет, почему мы часто ошибаемся в ее определении, на основе каких данных можно делать правильные выводы и принимать эффективные решения. Прочитав книгу, вы научитесь анализировать информацию и выявлять причинно-следственные связи, объяснять прошлое и предсказывать будущее.
Книга будет интересна аналитикам, философам, исследователям, медикам, экономистам, юристам, начинающим ученым, всем, кто имеет дело с массивами данных и хочет научиться критическому мышлению.
На русском языке публикуется впервые.

Почему - читать онлайн бесплатно полную версию (весь текст целиком)

Почему - читать книгу онлайн бесплатно, автор Саманта Клейнберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Без подобного понимания человек, перед которым просто вывалили беспорядочную кучу информации из базы и сказали «Ройся в ней, как твоей душе угодно», может ошибочно обнаружить, что низкая температура – индикатор улучшения состояния пациента, потому что медсестры после случая с выскользнувшим катетером начинают уделять ему больше внимания и быстро устранять проблемы. Действия на основе подобной корреляции способны стать причиной неэффективных вмешательств, когда охлаждение пациентов приблизится к опасному уровню.

В добавление к необходимости определять корректность значения переменной, узнавать, что она означает и когда ее нет, тоже может оказаться сложнее, чем представляется. Практически все вычислительные методы исходят из допущения, что общие причины измерены и мы располагаем «правильным» набором переменных. Этого, однако, недостаточно, если данные не показательны в отношении истинного состояния переменной или если общее следствие – единственный надежный индикатор того, что причина имела место.

Среди прочего, диагноз может упоминаться в медицинской карте пациента для выставления счета, потому что это предполагаемый диагноз или данные наследственности, а также по иным причинам (например, ошибка копирования) [410]. Даже если значение указано, оно может неэффективно экранировать последствия причины, наличие определенного заболевания отражается неточно, а если не указано, это может быть результатом недосмотра регистратора. Если пациент болен диабетом, но это неадекватно отражено в документации, можно вывести некорректное соотношение между высоким содержанием сахара в крови и инсулином.

В некоторых случаях необходимо обладать обширными знаниями, чтобы проводить различие между переменными, измеренными в разных временн ы х рамках (сюда входят все теоретически измеримые временные точки), и теми, для которых недостает данных. Биллинговые [411]коды в медицинских картах могут сказать, от чего лечился пациент, а иногда в картах содержатся перечни патологических состояний пациента.

Если в ходе одного визита к врачу астма указывается, а в ходе другого нет, как это истолковать? Маловероятно, чтобы астма обладала свойством истинности только в один конкретный момент: это хроническое состояние. Однако пациент мог получать соответствующее лечение только в одном случае (и, следовательно, счет выставили только за этот визит). Все же, чтобы узнать, какие сведения упущены (врач некорректно не указал астму в списке проблем), а какие ложные (острое состояние вроде гриппа со временем ослабевает), нужно понимать не только саму проблему, но и как именно генерируются данные [412].

Наиболее оптимистичный сценарий – когда ошибки представляют собой просто случайные помехи, влияющие на все переменные в равной степени. В реальности, однако, устройства имеют разные уровни помех, а люди могут отвечать на одни вопросы точнее, чем на другие. К примеру, если мы спросим некую группу, курят ли они, одни солгут, а другие решат, что их спрашивают, курят они сейчас или курили ли в прошлом. Измерения артериального давления печально известны своей ненадежностью, поэтому мы можем обнаружить, что лекарство от гипертензии – лучший индикатор, указывающий, страдает ли человек от повышенного давления на самом деле. Конечно, затем мы увидим корреляции между этим препаратом и другими состояниями, а не между гипертензией и сопутствующими патологиями. Необходимы знания в конкретной области, чтобы понять: лекарство – просто индикатор гипертензии, оно не может быть причиной заболеваний.

Наконец, корреляции, выведенные на основе крупных наборов данных, которые изначально не предназначались для научных целей, могут отличаться низким уровнем обобщаемости, ограничивая нашу способность применить новое знание к будущим ситуациям.

В 2010 году ученые проверили, действительно ли пользователи Facebook с большей вероятностью пойдут на выборы в американский Конгресс, если получат информацию о голосовании при входе в соцсеть. И в частности, действительно ли процент пришедших на избирательные участки вырастет, если люди узнают, что их друзья уже проголосовали [413]. Более 60 миллионов человек получили извещения от Facebook с перечнем их друзей, которые указали, что уже проголосовали, а две группы поменьше (примерно по 600 000 человек в каждой) либо получили такую информацию в виде ссылки на местный избирательный участок, либо не получили никакой. Сравнив эти группы и кросс-ссылки с данными голосования, ученые заявили, что, по их оценкам, информирование в соцсети привело к увеличению числа проголосовавших примерно на 60 000 (а по косвенным данным – еще на 280 000).

И все же дополнительные 60 000 избирателей после рассылки извещений 61 миллиону – это прирост голосов менее чем на 0,1 %. Необработанные данные могут выглядеть внушительно, но только наличие громадной соцсети позволило применить подобный нецелевой метод. Если бы его пришлось реплицировать на соцсети меньшего охвата, то, чтобы получить значимую цифру новых голосов, понадобился бы иной, более прямой подход. В действительности фотографии близких друзей оказались намного эффективнее информации о том, что какие-то дальние знакомые посетили избирательные участки, однако фильтр подобного рода потребовал бы сведений о взаимоотношениях между людьми. С учетом слабого эффекта такого подхода, различий между пользователями Facebook и других соцсетей, а также несбалансированных размеров групп нельзя сказать, что это вмешательство эффективно и его можно с успехом использовать на примере других соцсетей или во время избирательных кампаний вне США. Вместо того чтобы отказываться от преимуществ причинности, лучше отказаться от идеи заиметь «черный ящик», который поглощает некий набор данных прямо из их источника и выдает поток причин, не требуя ни интерпретации, ни человеческого вмешательства. Каузальное осмысление необходимо и возможно, однако оно не идеально и, что более важно, требует специальных знаний.

Основные принципы

Легко может создаться впечатление, что множество не связанных между собой отраслей знания работают в изоляции друг от друга над мелкими частями проблемы, потому что ученые, затворившись в своих узкоспециальных башнях из слоновой кости, спорят о наилучших способах выявления и применения причин. Очевидного консенсуса не видно, а каждый подход страдает таким количеством ограничений, что все предприятие кажется просто безнадежным. Нужно понимать, что, даже если мы искренне хотим узнать причины, скорее всего, сделать этого так и не сможем.

Проблема каузальности не решена, и здесь нет никакой великой и единой теории. Мы не можем дать определение причины, работающее в каждом отдельном случае, с которым столкнемся, и не существует метода выявления причин на основе данных любого и каждого типа. Безусловно, азарт исследователей подогревается недосягаемыми горизонтами неизведанного. Но если вы не из их числа, что можете для себя вынести?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Саманта Клейнберг читать все книги автора по порядку

Саманта Клейнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Почему отзывы


Отзывы читателей о книге Почему, автор: Саманта Клейнберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x