Джордан Морроу - Как вытащить из данных максимум. Навыки аналитики для неспециалистов
- Название:Как вытащить из данных максимум. Навыки аналитики для неспециалистов
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2022
- Город:Москва
- ISBN:978-5-9614-7563-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джордан Морроу - Как вытащить из данных максимум. Навыки аналитики для неспециалистов краткое содержание
Для тех, кто хочет научиться говорить на языке данных уверенно, признанный эксперт в области дата-грамотности Джордан Морроу и написал свою книгу. Это практическое руководство позволит даже неспециалисту освоить четыре базовых уровня аналитики и узнать, как принимать эффективные решения на основе данных, чтобы извлекать максимум из информации и быть успешным в быстро меняющемся цифровом мире.
Как вытащить из данных максимум. Навыки аналитики для неспециалистов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Я руководил большой группой бизнес-аналитиков в компании, предоставляющей финансовые услуги. Наша команда строила специальные сводки для пользователей, составляли словарь данных и обеспечивали систему постоянного хранения данных (SSoR). Обратите особое внимание на последний пункт – SSoR, в этом примере он важнее всего. При построении сводок мы использовали множество разнообразных показателей.
Однажды мне написала (или позвонила, точно не помню) помощница президента одной американской группы защиты потребителей. Она спросила меня о каком-то показателе – ей хотелось разобраться, почему наше значение не совпадает с тем, которое получили ее сотрудники. Иными словами, наименование показателя было таким же, но цифры – совершенно другими, их взяли где-то в другом месте. Возможно, сотрудники у кого-то спросили в надежде на быстрый ответ – или, может быть, рассчитали величину сами, если кое-что смыслили в программировании. Вроде бы ничего плохого, да? Но проблема в том, что они пользовались не нашим собственным, а каким-то иным определением показателя, поэтому рассчитали его неправильно. Хуже всего, что эти некорректные цифры уже пошли «в народ», то есть стали достоянием общественности. И теперь нам нужно было придумать, как справиться с последствиями этой проблемы.
Почему я связываю эту проблему со свободным владением данными? Во-первых, тот, кто работал с показателем, не сверился с нашим словарем данных, чтобы уточнить определение. И это помешало получить правильный результат: специалист воспользовался не теми данными, которых требовало верное определение. Во-вторых, он не смог донести до других, как значение этого показателя может повлиять на остальные показатели, да и сам этого не понял, поскольку подсчитал неверно.
Итак, словарь данных служит для людей и организаций основой для получения нужных данных. Хочется верить, что в будущем организации все реже будут сталкиваться с проблемами, как в примере выше. Использование словаря данных для снижения риска или обеспечения прозрачности данных способствует внедрению и распространению общего для всех языка.
Стратегия чтения данных и свободного владения данными
Теперь, когда мы разобрались, что такое чтение данных и свободное владение данными, возникает вопрос: а как всего этого добиться? Какая стратегия поможет коллективу научиться лучше читать данные и общаться на языке данных? Здесь, как и в других аспектах информационно-аналитической стратегии, ответ кроется в простоте.
Чтобы стратегия в сфере данных и аналитики была успешной и оправдывала инвестиции, ее необходимо привязать к целям и задачам организации. К несчастью, это редкость: обычно в организациях информационно-аналитическая стратегия существует отдельно от бизнес-стратегии. Не попадайтесь в эту ловушку! Обеспечьте их прочную связь, чтобы информационно-аналитическая стратегия была инструментом успеха бизнес-стратегии. Одним из аспектов стратегии в сфере данных должна стать стратегия дата-грамотности, непосредственно связанная, помимо прочего, с чтением данных и свободным владением данными.
В этой области должны существовать общие направления и стандарты обучения сотрудников, но не стоит стричь всех под одну гребенку. Чтобы сотрудники успешно овладели дата-грамотностью, нужно оценить, что они уже умеют и с чем им комфортно работать. Только после этого руководство организации сможет определить, какие шаги предпринять и какие методы обучения использовать. Исходя из индивидуальных показателей каждого сотрудника, можно подобрать для него самый действенный способ совершенствования в чтении данных. А затем перейти к обучению более эффективному использованию языка данных. При таком подходе организация сможет избежать множества проблем.
Пример из жизни организации
Нам будет проще понять, как распространяются потоки данных в организации, если мы рассмотрим влияние общего языка данных на итоговый успех, но в конкретном контексте. Для примера давайте возьмем организацию, которая хочет изучить условия рынка для запуска нового продукта. В первую очередь предлагаю рассмотреть высокоуровневый поток: от идеи продукта до его запуска.
Итак, руководство организации решает запустить новый продукт. Как топ-менеджеры пришли к этой идее? При помощи опросов, сбора рыночных данных и изучения конкурентов они определили, что у них достаточно данных для понимания рынка, и установили, что новый продукт действительно необходим. Команде сотрудников было поручено проанализировать все данные и найти ключевые показатели и тенденции, что позволило топ-менеджерам принять взвешенное решение, подкрепленное данными. Это первый шаг в свободном владении данными (или в общении на языке данных). Это, возможно, не слишком очевидно, но в рабочих процессах организации всегда можно найти массу подобных примеров.
Первое, что должна была сделать команда, – при помощи чтения данных изучить рынок и понять, какой тип продукта может заполнить области неудовлетворенного спроса. Проведя анализ и прочитав данные, команда обнаружила множество таких областей – в различных регионах, в отрасли в целом. Способность читать данные позволила специалистам правильно истолковать картину рынка. А затем они сумели эффективно представить данные руководству компании. Понятно, что все это было бы невозможно без свободного владения данными. Если бы команды аналитиков и/или топ-менеджеров не смогли ни успешно поделиться собственными идеями, ни понять чужие идеи, удалось бы в итоге принять общее взвешенное решение? Очевидно, что поток данных должен быть правильно прочитан, правильно передан и правильно воспринят – на общем для всех языке.
После того как топ-менеджеры одобрили новый продукт, они должны были донести свои предложения до команд, ответственных за его запуск. Это тоже данные? Конечно же! Необходимо помнить, что данные – это не только цифры, это вся информация, которой обмениваются команды и отдельные сотрудники. Команда аналитиков и команда топ-менеджеров должны передавать нужную информацию командам, создающим продукт. А эти специалисты, в свою очередь, должны быть способны понять информацию – и не только понять, но и донести ее до других подразделений организации, отвечающих за разные этапы запуска продукта.
Надеюсь, вы начинаете понимать, что свободный поток данных и информации – это немалая часть бизнес-целей и задач? Даже на небольшом гипотетическом примере прекрасно видно, как способность читать данные и общаться на языке помогает организации в достижении ее целей. Аспекты применения чтения данных могут быть самыми разнообразными.
Читать дальшеИнтервал:
Закладка: