Елена Сапарина - Небесный землемер
- Название:Небесный землемер
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1959
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Елена Сапарина - Небесный землемер краткое содержание
Простой вопрос? Со времен философа древности Аристотеля и до наших дней тысячи ученых пытались ответить на него.
Для этого Землю меряли линейкой, объезжали с точнейшими часами в руках, «взвешивали», создавали математические ее модели.
Форма нашей планеты оказалась связанной с тяготением, магнетизмом, строением земных недр и движением Луны. Но точно сказать, что же именно она представляет собой, ученые не могут до сих пор. А в ответе на этот вопрос заинтересованы не только сами «землемеры». Точную форму Земли необходимо знать строителям и геологам, мореплавателям и картографам, астрономам и водителям будущих космических кораблей.
Сейчас в эти исследования включилась новая наука, родившаяся с запуском первых искусственных спутников Земли и космических ракет, — спутникия. Она дает верный ключ к решению одной из важнейших и труднейших задач, интересующих человека с первых дней его существования. Обо всем этом и рассказывает книга Е. Сапариной «Небесный землемер».
Небесный землемер - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
А раз наша Земля не совсем твердая, значит она тоже должна растягиваться под действием лунных сил? Другими словами, должны быть какие-то приливы и в самом теле Земли?
Ученые заставили Луну сообщить им о результатах эксперимента, который спутница Земли производит над нашей планетой в природной лаборатории. Так стало известно о существовании «твердого» прилива в земной коре. Теперь предстояло измерить его высоту.
Задача это необычайно трудная. Дело в том, что твердый прилив гораздо меньше океанского. На широте Москвы он равен всего 50 сантиметрам. По сравнению с земным диаметром — величина совершенно микроскопическая. Главное же, что хотя дважды в сутки москвичи, подобно плывущему по морю кораблю, поднимаются и опускаются на полметра, они этого не замечают. Твердый прилив невидим — ведь на гребне твердой волны вместе с нами поднимаются и здания и улицы.
Измерить его величину удалось, когда сообразили, что вместо самой высоты твердого прилива можно определять изменения веса какого-нибудь предмета, поднимающегося на гребне его волны. Отдаляясь от центра Земли, любой предмет дважды в сутки должен становиться чуть легче.
Конечно, полметра — ничтожное расстояние, и потеря веса тут просто трудновообразима, но современные приборы улавливают и такие величины. Их измеряют с помощью очень чувствительных гравиметров и особых, горизонтальных, маятников.
Теперь по величине этого твердого прилива можно было постараться узнать, насколько «мягка», податлива наша Земля.
Известный советский ученый, член-корреспондент Академии наук М. С. Молоденский добился в этой области больших успехов, но ему не удалось прийти к окончательному решению — доказать, твердая или жидкая наша планета внутри.
Геофизики вернулись к самой Земле. Есть еще один способ узнать, из чего сложены ее недра. Это можно определить по тому, насколько сильно замедляются обороты земного шара вокруг оси.
Известно, что когда надо определить сырое (жидкое внутри) или вареное (с твердой серединой) яйцо, его крутят. И вот перед нами вращающееся «яйцо» — Земля. Как же определить, какой она густоты?
Опять обратились к неугомонным путешественникам — полюсам. Ведь по времени их отставания от теоретического «расписания» можно судить не только о том, твердая вообще Земля или нет, но и в какой степени она упруга.
Благодаря этому способу удалось подойти к разгадке строения нашей планеты еще ближе. По исследованиям советского астронома Е. П. Федорова получилось, что внутри относительно твердой Земли находится жидкое ядро, с поперечником около 6 тысяч километров. К похожему выводу пришел и англичанин Г. Джефрис.
Теперь своим новым помощником геофизики избрали искусственный спутник, который дает возможность прощупать не только поле тяготения вокруг Земли, но и как бы заглянуть в ее недра. И есть все основания надеяться, что этот «лот», заброшенный в земные глубины из космоса, представит уже несравненно более точную картину строения внутренности нашей планеты.
Когда французский Конвент утверждал метр как часть земной окружности, предполагалось, что с размерами Земли будут сравниваться лишь земные расстояния.
Но вот астрономам потребовалось узнать, насколько отстоят от нас наши соседи — Марс, Венера, Юпитер, Плутон и другие планеты солнечной системы. Да и само Солнце — как далеко оно от Земли? И оказалось, что размеры нашей солнечной системы и вообще все расстояния в космосе, будь то длина пространства, отделяющая от нас ближайшую галактику или самую далекую, едва мерцающую звезду, можно определить, только зная величину Земли.
Здесь уже не обойтись крошечной мерой — 40-миллионной долей земного меридиана. На этот раз в ход приходится пускать весь земной диаметр целиком.
Как же измеряют расстояния до небесных тел? Разумеется, никто и не думает укладывать земной диаметр на всем протяжении от Земли до звезды. Космические расстояния нельзя измерить непосредственно, приложив к ним даже самую большую линейку. Чтобы сделать это не сходя с места, ученым пришлось применить хитроумный прием.
Поставьте на стол зажженную лампу и посмотрите на нее, зажмурив сначала левый, затем правый глаз: лампа как бы отскочит в сторону. Отчего это происходит?
Когда мы смотрим двумя глазами, изображение лампы, видимое каждым глазом отдельно, проецируется на ось, проходящую ровно посредине между обоими глазами. Закрывая по очереди то один, то другой глаз, мы как бы разъединяем это изображение на два и рассматриваем каждое из них поврозь. Вначале видим лампу так, как ее видит правый глаз, а закрыв его — так, как она видна левому глазу.
Величина промежутка между левым и правым изображениями лампы зависит от расстояния, на котором находятся друг от друга оба глаза, — оно называется базисом. Если базис будет больше, то и лампа «скакнет» сильнее.
А теперь поставьте лампу в дальний конец комнаты и проделайте то же самое. Хотя базис остался прежним, расстояние, на которое перемещается лампа, стало меньше, так как мы смотрим на нее издалека.

Выходит, что по величине такого «скачка» при одном и том же базисе можно судить, как далеко находится наблюдаемый нами предмет. Этот способ и применяют астрономы для измерения расстояний до небесных тел. Только базис приходится брать не такой маленький, как в нашем домашнем «опыте», а длиной в тысячи километров. Им служит диаметр Земли.
Один из наблюдателей располагается с одной стороны земного шара, а другой — в противоположной точке, на другом конце земного диаметра. Если бы можно было мгновенно перелететь из одного такого пункта наблюдения в другой, то мы увидели бы, как Луна, например, подобно нашей лампе, совершает по небу скачок. Величина его, как мы уже знаем, зависит от длины базиса.
А если мы теперь с концов того же базиса будем смотреть на какую-нибудь более далекую планету, например на Марс? Его скачок, как и в случае с лампой, которую мы поставили в дальний угол комнаты, покажется нам не столь большим, как у близкой Луны.
Итак, чтобы подсчитать, на каком расстоянии от Земли находится Луна или любая другая планета, надо знать, чему равен земной диаметр и насколько «сдвигается» небесное тело, если смотреть на него сначала с одного конца этого диаметра, а потом с другого.
Это кажущееся перемещение небесного тела называется параллаксом. Определить расстояние до Луны, Солнца или звезд — это значит прежде всего найти их параллакс.

Если мысленно пункты наблюдения, находящиеся на концах невидимого земного диаметра, соединить воображаемыми прямыми с Луной хотя бы, то космическое пространство между Землей и Луной перережут два громадных треугольника. Одна сторона каждого из них известна — это радиус нашей планеты, или половина базиса, а другая и есть расстояние между Луной и Землей, которое надо узнать.
Читать дальшеИнтервал:
Закладка: