Елена Сапарина - Небесный землемер
- Название:Небесный землемер
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1959
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Елена Сапарина - Небесный землемер краткое содержание
Простой вопрос? Со времен философа древности Аристотеля и до наших дней тысячи ученых пытались ответить на него.
Для этого Землю меряли линейкой, объезжали с точнейшими часами в руках, «взвешивали», создавали математические ее модели.
Форма нашей планеты оказалась связанной с тяготением, магнетизмом, строением земных недр и движением Луны. Но точно сказать, что же именно она представляет собой, ученые не могут до сих пор. А в ответе на этот вопрос заинтересованы не только сами «землемеры». Точную форму Земли необходимо знать строителям и геологам, мореплавателям и картографам, астрономам и водителям будущих космических кораблей.
Сейчас в эти исследования включилась новая наука, родившаяся с запуском первых искусственных спутников Земли и космических ракет, — спутникия. Она дает верный ключ к решению одной из важнейших и труднейших задач, интересующих человека с первых дней его существования. Обо всем этом и рассказывает книга Е. Сапариной «Небесный землемер».
Небесный землемер - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Радиус Земли является как бы «неразменным рублем», который остается одинаковым и неизменным при всех переходах от звездных величин к обычным. Он представляет собой связующее звено между измерениями в пределах непосредственно доступного человеку земного пространства и косвенными измерениями в космосе.
Может показаться, что большого значения точные размеры Земли при этом не имеют. Ну, насколько изменится наше представление о расстоянии от Земли до Солнца, насчитывающем не один десяток миллионов километров, или о еще большем поперечнике всей солнечной системы, исчисляющемся уже миллиардами километров, если окажется, что радиус Земли составляет не 6375, а 6378 километров? Казалось бы, это должно пройти незамеченным.
Но астрономы подсчитали, что если из-за уточнения размеров нашей планеты параллакс Солнца изменится всего на одну сотую долю секунды, то в астрономическую единицу придется внести весьма солидную поправку — прибавить к ней или, наоборот, отнять от нее целых 170 тысяч километров. А изменение величины радиуса Земли всего на 100 метров означало бы, что поперечник солнечной системы вычислен с ошибкой в 185 тысяч километров.
Это все касается размеров Земли. А играет ли какую-либо роль ее форма? Или, того больше, развиваемая ею сила тяжести? Одинаковая она на всей Земле или нет, ровное поле тяготения вокруг нашей планеты или нет — это уж, по-видимому, не имеет никакого отношения к взаимным расстояниям небесных тел. Посмотрим, что получается в действительности.
Мы не можем узнать ни одного звездного расстояния, не определив вначале расстояние до Солнца. Ведь с концов маленького земного диаметра мы не увидим, как «скачут» звезды. А чтобы смотреть на них с разных концов земной орбиты, и надо знать расстояние от Земли до Солнца. Для этого же необходимо, как вы помните, измерить солнечный параллакс. Но измерить его достаточно точно не удается из-за большой величины солнечного диска. Вот почему параллакс Солнца большей частью не определяется из наблюдений, а вычисляется, исходя из размеров лунного (или из наблюдений планет при их наибольшей близости к Земле).
Видимый диск Луны хотя и не намного меньше солнечного, но зато находится гораздо ближе и удобнее для наблюдений. Но именно потому, что Луна по сравнению с Солнцем очень близка к Земле, точная величина ее параллакса зависит даже от такой детали, как был ли в месте наблюдения выступ или впадина, то есть не только от размеров, но и от точной формы Земли.
А если попытаться, скажем, определить массу Солнца? Придется сравнить силу, с которой будут притягивать одинаково удаленный предмет Солнце и Земля. Величина этой силы, как известно, зависит от расстояния, на каком она действует. Таким образом, и в этом случае необходимо знать солнечный параллакс. Причем на сей раз мы попадаем в еще большую зависимость от нашей планеты — ведь вес Солнца, как и любых других небесных тел, впрочем, нельзя вычислить, не зная и веса Земли.
Выходит, что мы не можем измерять расстояния в космическом пространстве, если не известны какие-то определенные величины, зависящие от размера Земли: радиус земного шара, лунный и солнечный параллаксы. Эти величины называются фундаментальными постоянными астрономии.
Но столь же важно, оказывается, знать силу тяжести на сплюснутом полюсе и на выпуклом экваторе, величину центробежной силы, сжимающей Землю, и земную упругость, препятствующую этой силе сплюснуть Землю в полную меру своих возможностей. Другими словами, нужны все те исходные величины, без которых, как мы уже видели, нельзя определить точную форму Земли и силу земного притяжения. Они тоже являются фундаментальными постоянными, зависящими от размера земного шара и от его формы.
Определить точную форму Земли — и значит найти фундаментальные постоянные, связанные с ее размерами, строением недр, вращением, развиваемой ею силой тяжести, то есть те величины, без которых нельзя было бы ни измерить просторы вселенной, ни взвесить звезды и галактики — осуществить все то, что делает современную астрономию точной наукой. Выходит, что без знания истинной формы Земли мы не можем получить правильных представлений о всей вселенной.
Сейчас все эти опорные вехи вычислены очень приблизительно — так же, как лишь приблизительно известна фигура нашей планеты. Вот почему в системе современных фундаментальных постоянных астрономии есть противоречия. Так, параллакс Солнца, измеренный с помощью Луны, не соответствует, например, принятому в астрономии значению массы Земли и т. п.
Происходит это потому, что действительная Земля очень отличается от той «теоретической», как говорят астрономы, Земли, которую они сейчас принимают за основу всех своих измерений. Ведь в астрономии до сих пор Земля считается ровненьким эллипсоидом — даже не трехосным, а еще более неточным, всего с двумя осями.
И все современные значения фундаментальных постоянных относятся именно к этой упрощенной Земле.
Пользоваться такими неточными «инструментами» при исследовании вселенной становится все труднее и труднее. Вот почему астрономы все чаще начинают поговаривать, что им нужны более правильные фундаментальные постоянные. А их может доставить только геодезия, определив истинную форму нашей планеты.
При этом любопытно, что с помощью естественной Луны удалось бы определить только две из них — сжатие Земли и ее размер. А искусственный спутник позволяет определить все до одной величины, характеризующие, по современным представлениям, форму нашей планеты.
Корабль летел в космосе. Свободный, независимый, не подверженный силе земного притяжения…
Среди черной бездны, наполненной звездами, показался исполинский ятаган Луны с блестящим, иззубренным темнотой лезвием. Поднята металлическая шторка на одном из «окошек» — и лунное тяготение, отражавшееся необычным «волшебным» составом, которым был покрыт корабль, пробилось, наконец, в эту отдушину. Притянутый Луной корабль стал падать…
Такого вещества нет в природе. Чудесное вещество без веса, тела из которого не имеют тяжести, создано лишь воображением фантастов. Чтобы превратить волшебную сказку в реальность, надо разгадать природу тяготения.
Всепроникающая таинственная тяжесть, от которой нельзя ни спрятаться, ни заслониться, — в чем ее природа, почему она «тяжелая»? — волнующий вопрос, одна из интереснейших проблем современной науки.
Читать дальшеИнтервал:
Закладка: