Борис Ляпунов - Борьба за скорость
- Название:Борьба за скорость
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1952
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Ляпунов - Борьба за скорость краткое содержание
Борьба за скорость - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Не только от высокой температуры приходится защищать металл.
Горячие газы и кислород, которого немало в избыточном воздухе, могут разрушить нагретые стенки камеры. Для изготовления пламенных труб идет специальная жароупорная, химически стойкая сталь.
Нельзя забывать и того, что при нагревании металл расширяется. Если камеру сгорания закрепить с двух концов, то поломка неизбежна. Поэтому ее закрепляют только одним концом, а другой имеет возможность скользит, удлиняться.
Воздух в камере тщательно перемешивается с горючим. Раскаленные газы встречают струю впрыскиваемого топлива и зажигают его. Однажды зажженное, топливо будет само продолжать гореть.
Продукты сгорания, выходящие из пламенной трубы, смешиваются с потоком воздуха из воздушной камеры, и температура их понижается.
Для нормальной работы камеры необходимо распылить топливо форсунками, зажечь струю топлива, обеспечить устойчивое горение, равномерную подачу воздуха и топлива и перемешивание воздуха о газами.
Чтобы создать удовлетворительно работающую конструкцию камеры сгорания, пришлось производить многочисленные и сложные исследования.
Вот, например, как изучали распыливание топлива. Жидкую частицу трудно измерить. Поэтому через распылительную форсунку вместо топлива разбрызгивали расплавленный парафин и затем собирали быстро затвердевшие мельчайшие его капельки. Просеиванием разбивали частички на группы разных размеров. Надо было определить размеры нескольких тысяч частиц, чтобы решить, как лучше подавать топливо в двигатель и как лучше распылять ею.
При испытаниях камеры сгорания инженеры встретились с непонятными, на первый взгляд, явлениями. Сварной шов на камере после непродолжительной работы двигателя разрывался, как будто стенка была сделана не из прочной стали, а из жести.
Сначала думали, что в этом виновата сварка. Эту мысль, однако, скоро пришлось оставить: разрывы появлялись и там, где швов поблизости не было. Решили сделать стенки потолще, но… аварии продолжались.
Тогда стали внимательно исследовать места поломок и заметили, что металл там уставал, прочность ею падала. Наблюдения за давлением воздуха, идущею из компрессора, объяснили причину усталости металла. Оказалось, что воздух пульсировал, давление его менялось много раз в секунду. Это и было причиной поломок. Когда воздушную камеру сделали из мягкой стали, лучше переносящей частые колебания давления, аварии прекратились, и срок службы камеры намного увеличился.
Тщательно, шаг за шагом изучают инженеры работу камеры сгорания. И если современные газотурбинные двигатели служат десятки и сотни часов, этим могут гордиться наряду с конструкторами, металлургами и инженеры-химики, физики, теплотехники — творцы «огненного дыхания» газовой турбины.
Наиболее ответственная деталь турбины — это лопатка.
Каждая лопатка растягивается центробежной силой, превосходящей ее вес в десятки тысяч раз. Да вдобавок она еще все время находится в потоке горячих газов и нагревается до высокой температуры. Лопатка может поэтому «поползти», удлиниться и довольно значительно. Тогда она заденет за кожух и авария неизбежна.
Даже камеру сгорания, где непрерывно бушует поток раскаленных газов, нельзя сравнить по условиям работы с турбиной. Тем более нельзя сравнить с нею компрессор, хотя как в турбине, так и в компрессоре, развиваются большие центробежные силы.
Турбине приходится гораздо тяжелее, чем другим частям газотурбинного двигателя — вот какой можно сделать вывод. Значит, материал для нее должен быть особо прочным и способным сохранять свои свойства при высоких температурах.
Чтобы яснее себе представить, насколько трудной была эта задача, ознакомимся с требованиями трех инженеров.
Инженер-металлург скажет нам: металл для турбины при высоких температурах не должен разрушаться и изменять своих свойств.
Инженер-технолог предъявит свои требования: нужно, чтобы металл для турбины можно было ковать, прокатывать, отливать, сваривать и обрабатывать на станках.
А инженер-конструктор потребует, чтобы этот самый металл выдержал как можно более высокую температуру: чем выше температура, тем лучше работает двигатель.
Когда изыскания материалов для газовых турбин еще только начинались, существовали сплавы, выдерживающие температуру «всего» около 500° и пригодные только для паровых турбин.
Дальнейшая работа над этими сплавами была по существу сражением за каждый лишний десяток градусов. Об этой борьбе мы с вами говорили, когда речь шла о рождении материалов. Правда, в авиационных турбокомпрессорах, турбины которых работают на отходящих газах двигателя, температура доходит до тысячи градусов. Но их жизнь коротка. Для газотурбинных же двигателей долговечность — важнейшее требование. Срок их службы должен исчисляться сотнями часов, а у газовых турбин электростанций — десятками тысяч часов.
Поведение металла стали исследовать при постепенно повышающейся температуре и больших центробежных нагрузках.
Перепробованы были всевозможные варианты различных добавок, которые могли бы придать сплавам нужные свойства, и в результате удалось создать жаропрочные сплавы для газовых турбин.
В настоящее время для изготовления лопаток применяются сплавы никеля и хрома, а также сталь с добавками никеля, хрома и марганца.
Диски турбин, которым приходится работать в более легких условиях, делаются из стали, содержащей небольшие добавки хрома, марганца, никеля, молибдена.
Для лопаток турбины испытывались и другие материалы. В Германии пытались, например, из-за недостатка дефицитных металлов применять керамические материалы и даже армированный фарфор с металлической решеткой внутри для увеличения прочности, подобно железобетону. Они смогли бы выдержать значительно более высокую температуру, чем металл. Однако прочную керамическую лопатку, не разрушающуюся при огромных центробежных нагрузках, создать нелегко, и дальше опытов пока дело не пошло.
Для уменьшения нагрева лопатки можно устроить полыми и через них пропускать поток воздуха.
Охлаждающий воздух подводится к диску турбины, омывает его с двух сторон, а затем поступает внутрь лопатки через отверстие у ее основания. Полые лопатки изготовлять, конечно, сложнее, чем сплошные. Зато при опытах удавалось повысить таким образом допустимую температуру газов до 1000° и более.
Очень сложно охлаждение лопаток жидкостью.
Можно применить газовое охлаждение, создавая защитную газовую пленку со стороны нагреваемой поверхности. Лопатка изготовляется тогда из пористого материала, полученного спеканием металлической пудры. Газообразный водород или азот под давлением вытесняется на поверхность и защищает лопатку от перегрева.
Читать дальшеИнтервал:
Закладка: