Александр Харс - Я познаю мир. Компьютеры и интернет
- Название:Я познаю мир. Компьютеры и интернет
- Автор:
- Жанр:
- Издательство:«Издательство ACT»
- Год:2004
- Город:Москва
- ISBN:5-17-014277-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Харс - Я познаю мир. Компьютеры и интернет краткое содержание
Читателя ждет увлекательный рассказ о том, как создавались первые вычислительные машины, какие изобретения и открытия отделяют абак древности от современного компьютера, как устроен компьютер и как пользоваться Интернетом.
Я познаю мир. Компьютеры и интернет - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Если мы сплавим не два, а три кусочка: «дырочный», электронный и снова «дырочный», то получится уже триод. Или, как его еще называют, – транзистор. Для работы транзистора нужны две батареи. Одна подключается «плюсом» к левой, «дырочной» части, – это и будет эмиттер. «Минус» этой батареи подключен к средней, электронной части кристалла, – здесь будет база транзистора. Вторая батарея подключена «плюсом» к базе. «Минус» этой батареи подключается к правой «дырочной» части, к коллектору.
Положительный потенциал первой батареи отталкивает «дырки» эмиттера, и они уходят на базу. Казалось бы, дальше идти некуда. Переход между базой и коллектором закрыт; вторая батарея включена так, что притягивает к своим полюсам электроны базы и «дырки» коллектора. Но закрыт этот переход только для «родных» электронов и «дырок» коллектора. А пришлые «дырки», оказавшиеся на базе по милости первой батареи, свободно перепрыгивают заградительный барьер и уходят к коллектору. Им помогает в этом отрицательный полюс второй батареи.
Стало быть, через обе батареи и триод пойдет «дырочный» ток. Какая–то часть этого тока ответвится на базу и замкнется через первую батарею. Но триод конструируют так, чтобы сила этого тока была мала, во много раз меньше силы основного тока, текущего из эмиттера через базу на коллектор. Базовый ток нужен лишь для того, чтобы с его помощью управлять основным потоком электронов, то есть транзистор является таким же усилителем сигнала, как и электронная лампа.
Экскурсия продолжается
Но мы. с вами несколько углубились в теорию. Давайте вернемся на завод микроэлектронных изделий и продолжим знакомство с производством микросхем, уже с большим знанием дела проследим, что происходит с полупроводниковым кристалликом дальше. Теперь–то вы понимаете, для чего в него в одном месте нужно вводить примеси N–типа для получения электронной проводимости, а в другом примеси P–типа для получения «дырочной» проводимости.
«Транзистор включает в себя три области кристалла, которые обладают проводимостью разного типа, – говорит нам технолог. – Это эмиттер, база и коллектор. У базы проводимость «дырочная», а у эмиттера и коллектора, расположенных по обеим сторонам базы, – электронная. Или наоборот...»
По технологическим соображениям транзисторы интегральных схем конструируются так, что их кристаллические области как бы вложены одна в другую. Вот как это делается.
На кремниевую пластинку с проводимостью необходимого типа наносят маскирующую пленку (например, окись кремния) и фоточувствительный элемент – фоторезист. Теперь на нем надо наметить размеры будущего коллектора. Для этого засвечивают фоточувствительный слой через окошко в фотошаблоне – стеклянной металлизированной пластинке, на которую нанесен необходимый узор. Фоторезист экспонируют ультрафиолетовым светом, фотошаблон убирают, засвеченный слой проявляют. Экспонированный фоторезист растворяется, обнажая второй слой маски – слой окиси кремнии. Затем кремниевую пластину помещают в травящий раствор, который растворяет окисел, но не действует на кремний и фоторезист. На этом процесс фотолитографии заканчивается. Фоторезист удаляют, а обтравленную пластину отправляют в высокотемпературную печь, в атмосферу фосфора или бора. Это делается для получения соответственно областей с «дырочной» или электронной проводимостью.

Коллектор готов. Теперь надо формировать базу, и все повторяется сначала. Причем добавляется новая довольно сложная операция – совмещение каждого последующего фотошаблона с уже нанесенным на пластину рисунком; ведь последующие фотошаблоны уже нельзя накладывать на пластину как попало. А при изготовлении некоторых транзисторов иногда требуется десяток фотошаблонов.
И вот блестяще отработанная, повсюду применяемая фотолитография в 70–е годы XX века зашла в тупик. Она оказалась неспособной обеспечить воспроизведение структур меньше 1–2 мкм. И дело тут было уж вовсе не в сложностях точного совмещения фотошаблонов. Просто фотолитография приблизилась к предельным возможностям, связанным с длиной световой волны. Не помогло даже то, что технологи от видимого света перешли к более коротковолновому ультрафиолетовому излучению – свет все равно огибает препятствия, размеры которых соизмеримы с длиной волны.
Попробовали заменить световой источник энергии электронным лучом. Казалось бы, все в порядке: длина волны ускоренного электрона, используемого в электронном микроскопе, на несколько порядков меньше длины световой волны. Но за это решение пришлось заплатить весьма дорогох! ценой: неимоверно возросли трудности, связанные с точным совмещением шаблонов, а это, в свою очередь, привело к резкому подорожанию самих интегральных схем.
Пара слов о самоформовании
Тогда технологи решили испробовать обходные пути, которые бы позволили формировать структуры интегральных схем без переноса рисунков. Среди доброй сотни всевозможных принципов давайте обратим особое внимание на способ самоформования, разработанный в Институте физики полупроводников АН Литвы С.С. Янушонисом и его коллегами. Он интересен не только тем, что допускает для формирования супермикронных структур использовать относительно простое технологическое оборудование. Еще этот способ характерен тем, что позволяет электронным микросхемам... самим себя лечить!
Как это может быть, проще всего понять на таком примере. Существуют шины, которые сами себя ремонтируют. Внутрь шины, кроме воздуха, закачивают небольшое количество герметика. Когда при проколе из шины начинает выходить воздух, вместе с ним в отверстие попадает и герметик, который и затыкает, ликвидирует прокол.
Аналогично, если в структуру твердого тела добавить особую примесь, то при «пробе» электрической схемы она, подобно клею–герметику, восстановит целостность проводника.
Таков сегодняшний день технологии микроэлектроники. А каково его будущее?
Представьте себе, в долгом космическом полете начнет выходить из строя электронная аппаратура – части «мозга», управляющего кораблем. Использовать резервные блоки можно с известной натяжкой – ведь они будут стареть вместе с основной аппаратурой. А вот методы самоформования открывают пути саморемонта. Компьютер найдет вышедший из строя элемент и даст команду на включение физико–химических механизмов его регенерирования. Через некоторое время структура элемента будет восстановлена.
Читать дальшеИнтервал:
Закладка: