Александр Харс - Я познаю мир. Компьютеры и интернет
- Название:Я познаю мир. Компьютеры и интернет
- Автор:
- Жанр:
- Издательство:«Издательство ACT»
- Год:2004
- Город:Москва
- ISBN:5-17-014277-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Харс - Я познаю мир. Компьютеры и интернет краткое содержание
Читателя ждет увлекательный рассказ о том, как создавались первые вычислительные машины, какие изобретения и открытия отделяют абак древности от современного компьютера, как устроен компьютер и как пользоваться Интернетом.
Я познаю мир. Компьютеры и интернет - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Пока все это делается весьма медленно. Но не забывайте, что действуют специалисты все–таки не голыми руками, а с помощью туннельных микроскопов и ЭВМ. А компьютер – такая машина: научи ее однажды чему–то, и она вовек того не забудет. Более того, вскоре сможет выполнять разученные операции со сказочной быстротой круглые сутки без остановки.
Как говорят нанотехнологи, зайдя в хозяйственный магазин лет через 25–30, вы сможете купить и поставить у себя дома не просто очередной кухонный агрегат, а репликатор – устройство, способное синтезировать по заказу любой продукт – хотите черную икру, хотите – трюфели. Возможности атомной сборки принципиально не имеют ограничений. Все в окружающем нас мире сделано из атомов, а значит, может быть скопировано атомно–молекулярной сборкой. Причем не просто скопировано, а, если надо, и модернизировано, улучшено...
Считающие атомы
Через десять лет будут освоены новые технологии, на фоне которых создание микросхемы покажется лишь эпизодом. Компьютеры будущего достигнут поразительной скорости выполнения вычислительных операций^ благодаря использованию принципов квантовой механики, работающих в атомном мире. В то же время для предотвращения сбоев в работе столь сложных устройств потребуются новые способы исправления кваптовых ошибок. Поиск таких способов – задача столь же сложная, как создание самих квантовых компьютеров.
Опасения за секреты
Недавно к одному известному российскому ученому, специалисту в области вычислительной техники, обратились за консультацией люди, отвечающие за информационную безопасность страны. Их заинтересовало сообщение о принципиальной возможности создания компьютерного устройства, легко взламывающего шифры, которые сегодня не по зубам всем суперкомпьютерам мира вместе взятым. Представителей спецслужбы интересовало, насколько правдиво это газетное сообщение, когда такой аппарат реально начнет действовать.
Ученый констатировал, что все написанное – чистая правда, подобные системы могут появиться уже через 4–5 лет. И называются они квантовыми компьютерами.
Насколько быстро они будут действовать, говорит хотя бы такой факт. К примеру, взлом системы RSA–129 потребовал в 1994 году восьмимесячной работы 1600 мощных ЭВМ, расположенных по всему миру и объединенных посредством Интернета. Разгадывание шифра с ключом на основе раскладывания на простые множители 300–разрядного числа на классическом компьютере потребует уже 13 млрд лет (сегодняшний возраст Вселенной) непрерывной работы. А вот квантовый компьютер, по словам экспертов, справится с такой задачей за несколько недель.
Огромные возможности нового аппарата, если таковой будет создан, перевернут ситуацию не только в криптографии. Как считает один из ведущих специалистов в области квантовых вычислений Джон Прескилл из Калифорнийского технологического института, по–истине уникальные возможности открываются для моделирования физических процессов на микроуровне. А профессор из Оксфорда сэр Роджер Пенроуз всерьез говорит о реальной возможности создания на основе квантового компьютера систем искусственного интеллекта. То есть, говоря попросту, машины станут думать и принимать решения быстрее людей. И они, эти решения, будут качественнее наших.
На каких же принципах будет работать эта чудо–машина?
Кризис жанра
Что–то подобное квантовому компьютеру человек должен был изобрести неизбежно. Гонка информационных технологий, не сбавлявшая темпы более сорока лет, находится сегодня на финишной прямой.
В середине 60–х годов XX века американец Гордон Мур подсчитал, что производительность современных ему вычислительных систем каждые восемнадцать месяцев удваивается. И предположил, что ото своеобразное правило будет соблюдаться и в будущем. И действительно за прошедшие 40 лет закон Мура не нарушался ни разу.
Правда, один из отцов–основателей компании «Иителл» не учел одного обстоятельства: геометрический рост числа транзисторов в микросхеме потребовал все ускоряющегося уменьшения их размеров. В считанные квадратные сантиметры поверхности монокристалла из кремния сегодня приходится впихивать уже десятки миллионов конструктивных элементов. Но все имеет свой предел – сами элементы при этом уменьшились уже до пределов молекулы.
А прозорливый Ричард Фейнман, с которым мы уже знакомились в разделе о нанотехнологии, еще лет 20 назад заметил, что законы физики не будут препятствовать уменьшению размеров вычисляющих устройств до тех пор, «пока биты не достигнут размеров атомов и квантовое поведение не станет доминирующим».
Сегодняшняя технология позволяет создавать элементы с размерами в десятую долю микрона (10~ 7метра), а чип содержит десятки миллионов транзисторов. Уже разработаны транзисторы, размеры которых составляют сотые доли микрона, а следующий шаг в сторону микромира приведет к нанометрам (10 –9метра) и миллиардам транзисторов в одном чипе. В общем, еще чуть–чуть – и мы попадаем в диапазон атомных размеров, где все начинает подчиняться необычным квантовым правилам. Согласно тому же закону Мура, произойдет это в течение десяти ближайших лет.
И вот тут специалистам по микроэлектронике придется радикально перестраиваться. Законы квантовой механики таковы, что вы уже не сможете, например, говорить об определенном положении частицы в пространстве, ее точной скорости, но только о «вероятности обнаружения частицы в некоторой зоне пространства со скоростью из некоторого диапазона скоростей».
Бит классического компьютера, ныне находящийся только в одном из двух состояний («О» или «1»), на квантовом уровне «размажется». Он как бы будет находиться в обоих состояниях одновременно, и можно говорить лишь о вероятности обнаружения его в одном из них.
Так говорит теория. Реально же дело обстоит еще сложнее, поскольку согласно принципу суперпозиции квантовый бит будет представлять собой некую линейную комбинацию состояний классического бита. Как говорят специалисты, возникнет некий «квантовый шум».
То есть, говоря попросту, в этой ситуации ныне принятая схема последовательных (детерминированных) вычислений перестанет работать. Но, может быть, можно найти другую?
Квантовый шум
Российский математик Юрий Манин, который ныне работает в исследовательском центре «ИБМ», еще в 1980 году высказал предположение, что «квантовый шум», который в ходе миниатюризации микросхем неизбежно превратится в препятствие для их нормальной работы, можно в принципе использовать для конструирования компьютеров нового типа.
Читать дальшеИнтервал:
Закладка: