Станислав Горобченко - Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике»
- Название:Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике»
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2020
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислав Горобченко - Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» краткое содержание
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
– Насос подпитки в линии подпитки, обеспечивающий стабильное давление в обратном трубопроводе путем восполнения потерь теплового агента за счет подачи деаэрированной воды.
– Дополнительными контурами являются контуры химводоочистки и водоподготовки, деаэрирования, подачи реагентов, удаления стоков, золоудаления, мазута и др.
Основных задач регулирования – две. Это регулирование выходных параметров пара и воды для потребителей и регулирование собственного тепловодяного баланса ТЭС. Для решения первой задачи регулируются выходные параметры – Т вых, Н вых, Q вых, в обратном трубопроводе Т обр, Н обр, Q обр. Для решения второй задачи регулирования и обеспечения тепловодяного баланса регулируют следующие параметры:
Q к– расход воды через включенные котлы, что обеспечивает допустимый диапазон расходов через них.
Т вх– температуру воды на входе в котлы с целью предотвращения образования конденсата на наружных поверхностях водяных труб внутри топок, так как конденсат является агрессивным.
Н обр– давление воды в обратном трубопроводе.
Структура контура регулирования может зависеть как от структуры самого объекта, так и от требований, предъявляемых к быстродействию в переходных режимах и точности в статических режимах.
В тоже время технологическую схему ТЭС можно представить в виде взаимосвязанных локальных контуров регулирования, где объект регулирования представляется апериодическим звеном со значительной нелинейностью и большими постоянными времени. Выделим основные контуры регулирования ТЭС:
1. Контур регулирования температуры в напорном трубопроводе ТЭС
Включает в себя котел, коэффициент передачи которого по нагреву и постоянным времени является переменными величинами, поскольку при разном числе параллельно работающих котлов температура в общем выходном коллекторе котлов Т кизменяется непропорционально управляющему воздействию. Например, при одном котле ПТВМ 50 включение одной горелки увеличивает Т кпримерно на 4 оС с общим времени регулирования 4-5 мин, а при двух котлах – на значительно меньшее значение за счет большего суммарного расхода воды в общем коллекторе.
Результирующая температура воды в сети Т сзависит от долевых значений расходов воды после котла Т ки обратной воды Т обр. Дополнительно учитывается функция смешения потоков воды, определяющая изменение температуры на разнице температур в обратном трубопроводе. В общем случае, она должна отражать также колебательность в упругой среде. Для датчика температуры главным фактором служит его собственная постоянная времени Т дат, составляющая до 10 сек.
Нагрузка ТЭС от теплопотребляющих агрегатов может быть описана передаточной функцией охлаждения теплового агента. Она также не линейна, если за возмущающее воздействие принять изменение температуры в теплопотребляющем агрегате и расход теплового агента, зависящий как от Т нагри расхода. Постоянную времени охлаждения Т охлможно ориентировочно принимать 10-40 мин, но в каждом конкретном случае она зависит от протяженности и конфигурации теплопотребления и расхода теплового агента.
2. Контур регулирования напора на выходе с ТЭС
Контур регулирования напора Н выхможно представить в виде двух апериодических звеньев – сетевого насоса и гидравлических сопротивлений котлов и параллельной им линии перепуска. Обе передаточные функции будут нелинейны. Функции содержат квадратичную зависимость напора от частоты вращения. Постоянная времени Т определяется технологическими требованиями из условия плавного регулирования, ее значение составляет до 5 сек. Функция гидросопротивления нелинейна вследствие изменяющегося сопротивления в зависимости от угла открытия клапана линии перепуска. Динамические процессы узла смешения характеризуются очень малыми постоянными времени сжатия жидкой среды и по сравнению с другими показателями регулирования при синтезе регуляторов ими можно пренебречь, т.е. считать функцию пропорциональной.
3. Контур регулирования давления в обратном трубопроводе
Контур предназначен для восполнения утечек теплового агента (подпитки сети). Его передаточная функция по управляющему воздействию нелинейна по той же причине, что и для сетевого насоса – вследствие квадратичной взаимозависимости напора и частоты вращения электропривода. Коэффициент передачи К обртакже зависит от температуры, влияющей на давление в замкнутом трубопроводе с постоянным объемом воды. Возмущающим воздействием на Н обрявляется также давление в напорном трубопроводе Н. В стационарном режиме внешние возмущающие воздействия приводят к медленным процессам изменения давления, длительность которых измеряется минутами.
4. Контур регулирования температуры воды на входе в котлы
Передаточные функции этого контура отражают гидравлические процессы в узле соединения трубопроводов. Расход в линии рециркуляции Q реци разность напоров Н реци Н ссвязаны нелинейной функцией Ф гидр, содержащей изменяющееся общее гидравлическое сопротивление параллельно включаемым котлам. В общем случае эта функция – колебательная с быстрым затуханием процесса.
Температура воды на входе в котлы Т вхявляется функцией смешения двух потоков жидкости с разной температурой. Функция смешения одновременно зависит и от объемов потоков и от изменяющихся независимо одна от другой их температур Т ки Т обр, что свидетельствует о неопределенной нелинейности. Как и в случае измерения температуры сетевой воды и постоянной времени, наиболее влияющей на процесс регулирования является постоянная датчика температуры, составляющая примерно 10 сек.
Исполнительным механизмом служит рециркуляционный насос с регулирующим клапаном или регулируемым электроприводом. Он является апериодическим звеном с постоянной времени примерно 3-5 сек, устанавливаемой преднамеренно для исключения резких изменений суммы расходов Q.
5. Контур регулирования расхода воды через котлы
Контур включает в себя регулирующий клапан с нелинейной функцией, определяющей расход в зависимости от угла открытия и перепада давления на его входе и выходе, определяемой из паспортных характеристик, а также функцией интегрирования угла открытия по управляющему воздействию. Как правило, длительность полного открытия клапана составляет примерно 63 сек, т.е. постоянная времени составляет примерно 20 сек. Именно эта постоянная является определяющей и учитывается при построении системы регулирования. Для обеспечения устойчивости и исключения колебательности внешнего контура необходимо встраивать внутренний контур регулирования угла открытия клапана со своей передаточной функцией Ф рег.
Читать дальшеИнтервал:
Закладка: