Коллектив авторов - Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ
- Название:Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:978-5-248-00680-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ краткое содержание
Для научных работников, студентов, аспирантов.
Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Еще одну трактовку методов трансдисциплинарных взаимодействий предложил Гюнтер Ропол [Ropohl, 2005]. Он рассматривает трансдисциплинарность как прообраз новой парадигмы организации науки в широком смысле, с присущей ей новой гибкостью, многообразием, рефлексивностью и идущей на смену ее дисциплинарной организации. Характеризуя на этом фоне арсенал методов трансдисциплинарной парадигмы, он отмечает, что они должны служить организационной интеграции, синтезу, связыванию и систематизации гетерогенного знания. «Трансдисциплинарная наука начинает с многомерного анализа понятий, классификаций и таксономических конструкций на базе морфологического метода; на этой основе она выстраивает отдельные понятия и частные модели сравнимые и сводимые к общей интегральной модели; для этого возможно использовать интерпретации герменевтики, охватывающие игру предпонимания и изложения, а также диалектику отношений между всеобщим и особенным» [Ropohl, 2010].
Таким образом, дискуссии и трактовки, связанные трансдисциплинарной интеграцией науки, демонстрируют ряд характерных тем и линий развития, этой проблематики. На этом фоне обозначаются поиски новых подходов и ракурсов анализа, выводящие на новые аспекты рассмотрения.
С контекстом дискуссий о «трансдисциплинарной» интеграции науки определенным образом связана разработка концепции «структурных наук», получившая распространение в основном в исследованиях науки, ведущихся в Германии. Причем в ряде классификаций науки эту группу наук стали выделять в отдельный кластер наряду с естественными, социальными, гуманитарными и прикладными (техническими) науками [Fuchs-Kittowski, Wohlgemuth, 2010, S. 104].
Одними из первых понятие «структурные науки» использовали известный немецкий физик Карл фон Вайцзеккер и ряд его последователей в публикациях рубежа 60–70‐х годов прошлого века [Weizsäcker, 1971]. Они позиционировали эти науки как направленные на изучение универсальных «абстрактных структур и связей действительности», независимо от того, в каких ее областях и на каких системных уровнях они находят проявление. При этом концепция «структурных наук» с самого начала предлагалась как нацеленная на стимулирование интеграционных, объединительных тенденций в науке. На них, в частности, возлагались задачи сближения и интеграции естественных и гуманитарных наук, а в перспективе и формирование некой «общей структурной науки», способной создать общий «структурный язык» для всех современных наук [Küppers, 2008]. Сам Вайцзеккер предпринял и институциональные усилия в этом направлении, убедив Общество Макса Планка создать Международный институт по изучению условий жизни в научно-техническом обществе, в научной программе которого идея интеграции естественнонаучных и гуманитарных исследований на базе моделей структурных наук была одной из центральных [Laitko, 2010] 9 9 Впрочем, судьба института, который в течение почти десяти лет Вайцзеккер возглавлял вместе с известным философом и социологом Юргеном Хабермасом, несмотря на ряд признанных достижений, была не вполне удачной. Институт прекратил свое существование. При этом, как отмечают некоторые авторы, одной из причин были проблемы в согласовании естественнонаучной и гуманитарной исследовательских программ и их фактическая дезинтеграция [Laitko, 2010].
.
В качестве особого кластера структурные науки отличают от естествознания или шире – от так называемых опытных наук, базирующихся на получении опытного знания и экспериментальном подтверждении теорий. В отличие от них, «структурные науки» нацелены на разработку универсальных абстрактных моделей действительности, которые посредством формализации могут вводиться в контексты различных дисциплин в качестве оснований для построения там соответствующих этому контексту прикладных моделей. Для моделирования структур они используют максимально общие абстрактные понятия, независимые от предметного содержания, которые приобретают содержательную фокусировку лишь, входя в определенные предметные контексты и дисциплинарные пространства [Küppers, 2000]. В этом смысле знания структурных наук имеют метанаучный статус, позволяющий им действовать «поверх» дисциплинарных границ, что и делает их сходными со знаниями трансдисциплинарного типа.
Важную роль в разработке абстрактных моделей структурных наук играют формализации, поэтому приоритетное место в их составе занимают формальные науки – математика и логика, которые сами понимаются как структурные науки. Структурный характер математики связывают с формированием в ней абстрактного понятия «алгебраической структуры», дополненного затем понятиями «топологической» и «упорядочивающей» структур. Разработавшие теорию математических структур авторы из группы «Бурбаки» называли эти три вида структур «материнскими» для всех математических дисциплин и обеспечивающих интеграцию математики [Bourbaki, 1950, p. 221–223]. Представленные в математических структурах множества и их отображения составляют основу практически всех отраслей математики – от самых элементарных до наиболее абстрактных и сложных.
При всем своем значении логико-математические теории все же обнаруживают определенные недостатки при моделировании различных абстрактных структур, о некоторых из них уже упоминалось выше. Поэтому круг структурных наук циклом логико-математических дисциплин не ограничивается. Он включает и целый ряд других научных областей, в той или иной мере отличных от последних.
В качестве примера здесь можно привести теоретическую информатику, она очень тесно связана с математикой, используя взятые из нее понятия алгоритма, вычисления и целый ряд других средств и приемов. Но в то же время она разрабатывает и ряд своих специфических понятий и методов, связанных с проблемами хранения, размещения и доступа к информации, не играющими в математике существенной роли [Fuchs-Kittowski, Wohlgemuth, 2010, S. 115–117]. Другой пример – системология или общая теория систем. Она тоже разрабатывает свои понятия: система, среда, самоорганизация, обратная связь и т.д., используемые для моделирования особого круга проблем, свойственных комплексным структурам. Математика здесь может использоваться как вспомогательное средство, а не как источник базовых понятий.
Примеры можно продолжать. Тем более, что кластер структурных наук постоянно пополняется. Называя лишь самые известные, можно упомянуть, например, кибернетику, синергетику, семиотику, теорию самоорганизации и мн. др. [Strukturwissenschaft, б.г.]. В эпистемологическом плане знания структурных наук можно рассматривать с точки зрения степени их приближения / удаления по отношению к предметному содержанию опытных наук и, следовательно, по степени или уровню абстрактности их моделей. Тогда, например, математические абстракции окажутся выше, чем абстракции системной теории или семиотики. Соответственно, целая группа структурных наук будет располагаться в «пространстве» между математикой и опытными науками [Fuchs-Kittowski, Wohlgemuth, 2010, S. 104]. Отсюда вытекает проблема их отношений с этими «соседями». И спектр мнений здесь достаточно широк – от сближения их с математикой до сближения с опытными науками [Küppers, Hahn, Artmann, 2013].
Читать дальшеИнтервал:
Закладка: