Владимир Левшин - Новые рассказы Рассеянного Магистра

Тут можно читать онлайн Владимир Левшин - Новые рассказы Рассеянного Магистра - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Детская литература, год 1971. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Левшин - Новые рассказы Рассеянного Магистра краткое содержание

Новые рассказы Рассеянного Магистра - описание и краткое содержание, автор Владимир Левшин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Дорогие читатели?

Если вы уже знакомы с незадачливым героем книги В Лёвшина "Магистр Рассеянных Наук", если уже сталкивались с бесчисленными ошибками и оговорками этого рассеянного математика, вам, вероятно, интересно будет узнать о его новых путешествиях и приключениях, а заодно снова встретиться с постоянными членами Клуба Рассеянного Магистра — Таней, Севой, Олегом и Нуликом.

Если же Магистр Рассеянных Наук для вас лицо новое, не смущайтесь: эта книга — совершенно самостоятельная история о том, как Магистр возомнил себя великим сыщиком и отправился в далёкие страны вместе со своей неизменной спутницей Единичкой, а также с твёрдым намерением расследовать дерзкое преступление

Особая к вам просьба: читая рассказы отважного, но рассеянного путешественника, старайтесь не пропустить ни одной его несуразицы, ни одной оплошности. Помните на ошибках мы учимся!

Отзывы о книге присылайте по адресу Москва, А-47, улица Горького, 43 Дом детской книги

Новые рассказы Рассеянного Магистра - читать онлайн бесплатно полную версию (весь текст целиком)

Новые рассказы Рассеянного Магистра - читать книгу онлайн бесплатно, автор Владимир Левшин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нулик надулся.

— Да, оставили мне самое неинтересное.

Но всё-таки обиженно засопел над блокнотом.

— Переносим неизвестные в одну часть равенства, а известные — в другую. Тогда 2 х = а . Отсюда х = 1/ 2 а. Что из этого вытекает? — Глаза президента вдруг оживились, голос окреп. — Из этого вытекает, что Джерамини заграбастал половину львиного богатства.

— Так, — кивнул Сева. — А какую часть своей добычи отдал Шейк Твист?

— Не беспокойся, подсчитаем и это! — бодро пообещал Нулик. — Если х = 1/ 2 а , то З х = 3/ 2 а . Так? А раз у Мистера-Твистера было до делёжки 2 а скарабеев, то отдал он 3/ 4своей добычи, ведь 3/ 2 а — это 3/ 4от 2 а . Вот и всё.

— Не совсем, — сказала Таня. — Остаётся узнать, во сколько раз у Джерамини оказалось денег больше, чем у обоих полицейских, вместе взятых.

— Узн а ем и это, — заверил её Сева. — У каждого из обделённых осталось по 1/ 2 а скарабеев, а Джерамини забрал 1/ 2 а + 3/ 2 а, то есть скарабеев. Значит, у него оказалось их вдвое больше, чем у обоих полицейских вместе.

Тут пришла официантка и все принялись за еду.

— Глядите-ка, — сказалвдруг Олег, вертя в пальцах бумажную салфетку. — Эта салфеточка нам как нельзя кстати. Она словно нарочно сделана для третьей задачи Магистра о треугольных галстуках. Ведь она сама треугольная!

Нулик грустно посмотрел на недоеденное пирожное Ничего старина утешил - фото 49

Нулик грустно посмотрел на недоеденное пирожное.

— Ничего, старина! — утешил его Олег. — В конце концов, есть и решать задачу можно одновременно. В общем, Единичке нужно было разделить большой треугольный лоскут на пять небольших треугольников так, чтобы площади их относились, как 1: 2: 2: 3: 4.

Он вынул карандаш и соединил середины боковых сторон треугольника, иначе говоря, провёл на салфетке одну из средних линий треугольника.

— Что у нас получилось? — спросил Олег. — Средняя линия разделила треугольник на две части. Одна из этих частей тоже треугольник, другая — трапеция. Все знают (а кто не знает, пусть докажет это сам), что площадь этого нового маленького треугольника в три раза меньше площади трапеции. Теперь проведём обе диагонали трапеции. Обратите внимание на то, что диагонали эти по совместительству представляют собой и медианы большого треугольника. Ведь они проведены в середины его боковых сторон! Все видят, что диагонали разделили трапецию на четыре части — на четыре треугольника. Самый маленький из них — верхний, два боковых — немного побольше, а самый большой — нижний. Узн а ем, каковы площади этих треугольников.

— Узн а ем! — решительно повторил Нулик, но тут же, впрочем, замолчал.

Вопервых нетрудно доказать и пусть каждый опятьтаки сделает это сам что - фото 50

— Во-первых, нетрудно доказать (и пусть каждый опять-таки сделает это сам), что оба боковых треугольника равновелики, то есть имеют одинаковые площади. Во-вторых, приняв площадь самого маленького из этих четырёх треугольников за единицу, выясним, во сколько раз каждый из остальных больше с а мого маленького.

Сева хлопнул себя п о лбу.

— Стоп! Кажется, нашёл. Ведь медианы треугольника делятся в точке пересечения на части, которые относятся, как 1: 2. Так? А так как высоты самого маленького треугольника и любого из боковых одинаковы, то площади их тоже относятся, как 1: 2.

— Не в бровь, а в глаз! — констатировал Олег. — Б о льшая часть задачи, таким образом, решена. Остаётся выяснить, во сколько раз площадь нижнего, самого большого треугольника больше площади самого маленького, принятого за единицу.

— И это тоже нетрудно! — подхватил Сева. — Ведь средняя линия, как известно, равна половине основания. А так как нижний и верхний треугольники, входящие в трапецию, подобны, то и высоты их тоже одна вдвое меньше другой. Ну, а раз так, то площади обоих треугольников относятся, как 1: 4. Вот трапеция и разделилась на треугольники, площади которых относятся, как 1: 2: 2: 4.

— Отлично! — сказал Олег. — Далеко пойдёте, молодой человек! А теперь ещё одно небольшое усилие: надо вспомнить, во сколько раз площадь первого отделённого нами треугольника меньше площади трапеции.

— Это я и без всяких усилий помню, — сказал Нулик. — Площадь отделённого треугольника меньше площади трапеции в три раза. Теперь подсчитаем, из скольких единиц состоит площадь трапеции. Площадь самого маленького мы приняли за единицу. Прибавим к этому два равных треугольника, площади которых вдвое больше, — получим пять единиц. Теперь прибавим к этому площадь самого большого из четырёх треугольников, равную четырём единицам. И получим всего девять единиц. Ну а 9, делённое на 3, опять-таки 3. Это и есть площадь первого отделённого нами треугольника.

— Молодчина! — одобрил Сева. — Теперь уж мы наверняка знаем, что площадь всего треугольника разделена на пять треугольников, площади которых относятся, как 1: 2: 2: 3: 4. Умница Единичка! Зд о рово решает задачи!

— Ура! — провозгласил президент и неожиданно, безо всякого перехода, похлопал себя по круглому пузику. — Ну и наелся же я! Прямо как Пантагрюа и Гаргантюэль.

— Осади назад! — остановил его Сева. — С вашего позволения, не Пантагрюа и Гаргантюэль, а Гаргантю а и Пантагрю э ль. Именно так называется книга Франсу а Рабле. Только читать тебе её, пожалуй, рановато. Всякому овощу…

Нулик только досадливо отмахнулся и очень недовольный вылез из-за стола. И то сказать невелика радость, когда тебе на каждом шагу напоминают, что ты ещё маленький.

Удивительно быстро темнеет зимой! Когда мы вышли из кафе, на улицах уже зажглись фонари. Падал тихий, лёгкий снежок. Мы снова свернули в малолюдный переулок.

Нулик не выдержал, побежал. За ним принялись бегать остальные.

— Догоняй! — крикнула Таня, пробегая мимо президента. Тот с весёлым визгом помчался за ней. Вот он уже почти касается её рукой. Вдруг Таня круто остановилась и подалась в сторону. В следующее мгновение президент растянулся на тротуаре.

— Это всё она виновата! — жаловался он, потирая ушибленную коленку.

— Ничего, — сочувственно оказал Сева, — девчонки, брат, они все такие.

— Да нет, — неожиданно захихикал Нулик, — я не про Таню, а про центробежную силу.

И опять все грохнули.

— Нанялся ты, что ли, повторять Магистровы нелепицы? — недоумевал Сева. — Бежал по тротуару по прямой линии, потом неожиданно остановился и упал, — ну при чем тут, скажи на милость, центробежная сила?

— А при том, что, если бы я бежал не с такой силой, я бы не упал.

— Эх, ты! Мыслитель! Центробежная сила проявляется только тогда, когда тело движется по кривой — ну, скажем, по кругу. Вот едешь ты, например, в такси, и водитель на полной скорости резко разворачивается. И валишься ты при этом на бок. Прижимает тебя к боковой стенке машины.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Левшин читать все книги автора по порядку

Владимир Левшин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Новые рассказы Рассеянного Магистра отзывы


Отзывы читателей о книге Новые рассказы Рассеянного Магистра, автор: Владимир Левшин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x