Владимир Левшин - Новые рассказы Рассеянного Магистра
- Название:Новые рассказы Рассеянного Магистра
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1971
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Левшин - Новые рассказы Рассеянного Магистра краткое содержание
Дорогие читатели?
Если вы уже знакомы с незадачливым героем книги В Лёвшина "Магистр Рассеянных Наук", если уже сталкивались с бесчисленными ошибками и оговорками этого рассеянного математика, вам, вероятно, интересно будет узнать о его новых путешествиях и приключениях, а заодно снова встретиться с постоянными членами Клуба Рассеянного Магистра — Таней, Севой, Олегом и Нуликом.
Если же Магистр Рассеянных Наук для вас лицо новое, не смущайтесь: эта книга — совершенно самостоятельная история о том, как Магистр возомнил себя великим сыщиком и отправился в далёкие страны вместе со своей неизменной спутницей Единичкой, а также с твёрдым намерением расследовать дерзкое преступление
Особая к вам просьба: читая рассказы отважного, но рассеянного путешественника, старайтесь не пропустить ни одной его несуразицы, ни одной оплошности. Помните на ошибках мы учимся!
Отзывы о книге присылайте по адресу Москва, А-47, улица Горького, 43 Дом детской книги
Новые рассказы Рассеянного Магистра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
— Не беда! — нашёлся Нулик. — При мне всегда запасной колокольчик.
Он схватил на руки Пончика, пощекотал его под подбородком — тот несколько раз тявкнул.
— Объявляю заседание открытым, — невозмутимо провозгласил Нулик. — Чур, первый вопрос мой. Прошу разъяснить: могут ли рыбы смеяться и что смешного в геометрии?
Сева удивлённо поднял брови.
— Мне кажется, вопрос уважаемого президента к делу не относится.
— То есть как это не относится? — возмутился Нулик — Магистр пишет, что смеялся каким-то сардиническим и даже геометрическим смехом. Но разве сардинки умеют смеяться?
Не знаю, как сардинки, а мы посмеялись вволю. Президент, как водится, поначалу обиделся, но потом не выдержал и стал хохотать заодно со всеми.
— Да будет тебе известно, — выговорил наконец Сева, — что сардинического смеха в природе не существует Есть сардонический.
Нулик пожал плечами.
— Сардонический? Это уж совсем непонятно.
— Почитай энциклопедию — поймёшь! — посоветовала Таня.
— Сама читай! — огрызнулся Нулик.
— А я уж прочитала.
— И что же вычитала?
— А то, что сардоническим называется смех язвительный, насмешливый, горький. И связано это с ядовитой травой сардонией. Если её поесть, лицо начинает дёргаться, кривиться.
— Так? — спросил президент и принялся корчить какие-то немыслимые рожи.
Сева безнадёжно махнул рукой.
— Ну, выпустила джинна из бутылки! Теперь конца не жди…
Действительно, президент так обрадовался возможности подурачиться, что, казалось, начисто позабыл о своём высоком сане и о научно-исследовательских интересах клуба. Но Олег сумел-таки призвать его к порядку.
— Между прочим, — сказал он, — Магистр не так уж сильно ошибся, когда назвал смех сардиническим. Ведь трава сардония растёт на острове Сардиния… От него, кстати, и получила название та вкусная рыбка, которая ловится в тех местах.
— Вот видите! — торжествовал Нулик. — Я всегда говорил, что Магистр — умница. У него даже и ошибки умные. Наверное, и «геометрический смех» не такая уж глупость.
— К сожалению, не могу с тобой согласиться, — сказал Олег. — Магистр, конечно же, имел ввиду гомерический смех, который никакого отношения к геометрии не имеет.
— А к чему, позвольте узнать, он имеет отношение?
— К Гомеру. Великому поэту Древней Эллады. Автору бессмертных поэм «Илиада» и «Одиссея».
Нулик досадливо топнул ножкой.
— Но при чём же тут гомерический смех?
— А при том, что в «Илиаде» есть одна сцена, где живущие на горе Олимп боги громоподобно хохочут над своим собратом Геф е стом.
— А чем он их насмешил?
— Бог огня и покровитель кузнецов Гефест был хромой и некрасивый. Наблюдая, как он хлопочет, готовя для них угощение, боги хохотали над его неуклюжими движениями.
— «Смех несказанный воздвигли блаженные жители неба, видя, как с кубком Гефест по чертогу вокруг суетится», — торжественно продекламировал Сева.
— Садитесь. Ставлю вам пять. — изрёк Олег профессорским тоном. — Надеюсь, теперь понятно, какой смех называют гомерическим.

— Моя мама говорит, что над физическими недостатками смеются только нравственные уроды, — сказал Нулик непривычно жёстко.
От неожиданности Сева даже присвистнул.
— Это ты верно говоришь! Олимпийские боги и впрямь особой добротой не отличались Это ведь они приковали к скале Промет е я за то, что он похитил божественный огонь и отдал его людям.
— А что они сделали с Сизифом? — напомнила Таня. — Он хотел избавить людей от смерти, а его за это отправили в ад и заставили там вечно вкатывать на гору огромный камень
— Стоп! — вмешался я. — На этот раз достаточно. Олимпийские боги совершили столько жестокостей, что перечисление их отняло бы слишком много времени. Займёмся лучше Единичкой. Как удалось ей так быстро перемножить в уме два многозначных числа, а потом, прибавив к произведению единицу, извлечь из этого квадратный корень?
— По-моему, ничего она не перемножала и не извлекала, — сказала Таня. — Просто применила какой-то способ.
Нулик стукнул себя кулачком в грудь.
— Спроси об этом у меня.
— Вот чудо! — всполошились все. — Ты знаешь Единичкин способ?
— Знать-то знаю, но… — Нулик почесал в затылке.
— Что ещё?
— Но применим ли он во всех случаях жизни? Вот вопрос…
— Об этом после, а пока давай рассказывай.
Нулик откашлялся.
— Леди и джентльмены, прошу внимания. Возьмём два последовательных нечётных числа: например, 15 и 17. Насколько я понимаю в арифметике, произведение их равно 255. Так? Теперь прибавим единицу. Что мы имеем? 256 Извлечём из 256 квадратный корень. Это всегда было и будет 16. А теперь сравните-ка ответ с заданными числами: 15 и 17. Что вы замечаете? Вы замечаете, что 16 есть среднее арифметическое между 15 и 17, то есть число, которое заключено между ними.
— Гениально! Я бы до такого нипочём не додумался! — уверял Сева.
Нулик сиял как медный грош, но скромность и преданность научным интересам заставили его снова обратиться к слабой стороне своего научного открытия.
— Хотел бы я знать, годится ли способ Единички для десяти- или двадцатизначных чисел?
— Так это же легко проверить, — сказал Олег.
— Что ты! — испугался Нулик. — Перемножать в уме такие огромные числа!
— Зачем перемножать? Просто решим задачу в общем виде. Обозначим первое из двух нечётных чисел буквой а. Тогда второе число будет а + 2 — ведь каждое следующее нечётное число больше предыдущего на 2. Теперь перемножим эти числа. Получим а ( а + 2). Затем прибавим к этому 1. Получим а ( а + 2) + 1. И, наконец, извлечём из всего этого квадратный корень

Вот и всё, — закончил Олег. — Вернее, почти всё.
— Очень даже почти! — подтвердил Нулик.
— Нет, не очень! Ведь подкоренное выражение а ( а + 2) + 1 можно преобразовать так: а 2+ 2 а + 1 А этот трёхчлен не что иное, как полный квадрат суммы, то есть ( а + 1) 2. А уж извлечь квадратный корень из квадрата проще пареной репы:

Вот теперь совсем всё!
— Теперь совсем! — согласился Нулик. — Потому что а + 1 это и есть число, стоящее между а и а +2, то есть их среднее арифметическое. Стало быть, способ годится для всех чисел.
На радостях президент прошёлся колесом по комнате, потом схватил на руки Пончика и принялся танцевать с ним вальс. Он веселился так бурно, что пришлось объявить антракт.
— А в антракте полагается идти в буфет! — заявил Нулик и с азартом набросился на бутерброды, приготовленные Таней.
Читать дальшеИнтервал:
Закладка: