Генрих Бурмин - Штурм абсолютного нуля
- Название:Штурм абсолютного нуля
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1989
- Город:Москва
- ISBN:5-08-000602-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Генрих Бурмин - Штурм абсолютного нуля краткое содержание
Книга о том, как физики, проникнув в область температур вблизи абсолютного нуля, открыли замечательное свойство вещества — сверхпроводимость. В ней рассказывается о выдающемся достижении современной физики — высокотемпературной сверхпроводимости, о применении сверхпроводников в технике и промышленности, об ученых — творцах этой области науки.
Штурм абсолютного нуля - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Советский академик, Герой Социалистического Труда Ландау был избран членом Лондонского королевского общества, членом Датской и Нидерландской академий наук, Национальной академии наук США, Американской академии наук и искусств.
Трудно назвать область современной физики, в которую Ландау не внес бы существенный вклад. Физика твердого тела и теория космических лучей, квантовая теория поля и физика ядра, физика элементарных частиц… Он опубликовал свыше 120 научных работ.
Благодаря его работам возник ряд новых научных направлений. Подобно цепной реакции, они вызвали сотни и тысячи теоретических и экспериментальных исследований.
Одной из наиболее значительных работ Ландау является созданная им в 1941 году теория сверхтекучести гелия И.
Теория Ландау дала полную картину всех исследованных к тому времени свойств гелия II и подсказала ряд новых явлений.
Приступая к решению загадок «солнечного газа», Ландау начал с изучения кривой зависимости теплоемкости жидкого гелия от температуры, которую в течение трех десятилетий с удивлением созерцали многие исследователи разных стран.
Взглянем и мы с вами, читатель, на эту кривую. В окрестности перехода гелия I в гелий II она удивительно напоминает греческую букву лямбда.
Поэтому температуру перехода жидкого гелия из одного состояния в другое принято называть лямбда — точкой.
По обе стороны лямбда — точки. Скупые линии графика бесстрастно регистрируют поразительные изменения удельной теплоемкости жидкого гелия в лямбда — точке.
Вправо от этой точки гелий ведет себя как обычная классическая жидкость. Влево — он приобретает удивительное свойство, сверхтекучесть.
Переход вещества из одного состояния в другое — явление далеко не новое в природе.
Простейший пример — вода, которая предстает перед нами в трех обличиях: в твердом состоянии — лед, в жидком — собственно вода и, наконец, в виде пара.
В науке такие превращения получили название фазовых переходов.
Повседневно наблюдаемые переходы, при которых происходит кипение, плавление или затвердевание вещества, сопровождаются поглощением или выделением теплоты. Это и есть та цена, которой приходится расплачиваться за перевод вещества из одного состояния в другое. При этом объем тела изменяется скачкообразно.
Однако переход гелия I в гелий II происходит без скрытой теплоты.
Такие переходы были известны и ранее, например, при резком изменении магнитных свойств вещества при определенной температуре. В отличие от обычных переходов, связанных со скрытой теплотой, они получили название фазовых переходов второго рода.
Ландау был первым физиком, детально исследовавшим природу фазовых переходов и создавшим теорию этих переходов.
Он показал, что при фазовых переходах второго рода действительно не должна выделяться скрытая теплота, а объем тела будет изменяться непрерывно. При этом должны скачкообразно изменяться вторичные термодинамические параметры: теплоемкость, сжимаемость и другие.
Экспериментальные данные измерений феноменального скачка теплоемкости и некоторых других параметров в точке перехода гелия I в гелий II блестяще подтвердили теоретические расчеты Ландау.
Так была разгадана первая загадка «солнечного газа»: преобразование гелия I в гелий II есть фазовый переход второго рода.
Теперь ученому предстояло, подобно герою старой сказки, разгадать еще ряд загадок возрастающей сложности.
— Удивительная метаморфоза гелия при температуре 2,2К, — рассуждал ученый, — не просто фазовый переход второго рода. Это качественно новое явление: классическая жидкость превращается в квантовую жидкость.
Что такое квантовая жидкость?
В микромире электронов, атомных ядер, атомов и молекул действуют свои закономерности, которые невозможно описать законами обычной (классической) механики, установленными на основании изучения движения тел большой массы.
В этом микромире целый ряд физических величин при определенных условиях могут принимать только дискретный (прерывистый) ряд значений, то есть они, как говорят физики, квантуются.
Отсюда и произошло название квантовой механики, возникшей в середине двадцатых годов новой отрасли теоретической физики, изучающей законы микромира.
Другой важный принцип квантовой механики заключается в так называемом соотношении неопределенностей, согласно которому чем точнее фиксировано положение частицы в пространстве, тем больше разброс ее скорости.
Можно представить себе, что произошло, если бы принцип неопределенности оказывал существенное влияние и на события, происходящие в окружающем нас макромире.
Предположим, что мы с вами находимся на железнодорожном вокзале.
«Поезд Москва — Ленинград отправляется в двадцать два часа пятнадцать минут со второй платформы», — объявляет диктор радиоузла.
Итак, положение «материальной частицы» в пространстве, в данном случае железнодорожного состава, определено точно. При этом условии в соответствии с принципом неопределенности никто не смог бы определить скорость поезда, а следовательно, время его прибытия на конечный пункт.
Более того, поезд вместо Ленинграда мог бы очутиться, например, в Кременчуге.
Впрочем, если поезд действительно опаздывает либо груз засылается не по назначению (а такие случаи еще, к сожалению, наблюдаются), железнодорожникам не следует оправдываться ссылкой на квантовую механику.
Принцип неопределенности действует только в микромире, а тела «больших» масс, с которыми нам приходится встречаться в обыденной жизни, полностью подчиняются законам классической механики, которые человечество твердо усвоило еще во времена Ньютона.
Однако своенравные обитатели микромира не подчиняются твердому расписанию.
С понижением температуры постепенно «замерзают» все виды теплового движения частиц.
Наконец, при абсолютном нуле температуры всякое движение должно прекратиться и частицы должны находиться в абсолютном покое, каждая на своем месте. Следовательно, при абсолютном нуле температуры любое вещество должно было бы неминуемо перейти в твердое состояние.
Такую картину можно себе представить на основе законов классической физики. Однако, как мы уже знаем, именно в микромире действует принцип неопределенности.
Попытка локализировать частицу приводит к появлению у нее скорости. А это значит, что и при абсолютном нуле температуры частицы не могут оставаться в покое. Они совершают колебания, которые так и называются: нулевые колебания.
Читать дальшеИнтервал:
Закладка: