Яков Перельман - Загадки, фокусы и развлечения (сборник)

Тут можно читать онлайн Яков Перельман - Загадки, фокусы и развлечения (сборник) - бесплатно ознакомительный отрывок. Жанр: Детская образовательная литература, издательство РИМИС, год 2008. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Яков Перельман - Загадки, фокусы и развлечения (сборник) краткое содержание

Загадки, фокусы и развлечения (сборник) - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».

Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.

Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.

Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.

Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Загадки, фокусы и развлечения (сборник) - читать онлайн бесплатно ознакомительный отрывок

Загадки, фокусы и развлечения (сборник) - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Яков Перельман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

– Верно, – подтвердил брат. – И число это примерно равно 1 1/4. Умножьте 1 1/4 x 1 1/4 x 1 1/4.

Вы получите 5x5x5/4x4x4, или 125/64, почти ровно 2.

– А как на самом деле?

– Так и есть: рубль шире полтинника в 1 1/4 раза.

– Это напоминает мне, – сказал гость, – историю о том человеке, которому приснилась серебряная монета в тысячу рублей. Она снилась ему поставленною на ребро и была высотою с четырехэтажный дом; между тем, если бы такая монета в самом деле была изготовлена, она, конечно, была бы не выше человеческого роста.

– Да, она должна была бы быть, – сказал брат, – всего в десять раз шире обычных размеров, потому что 10 x 10 x 10 = 1000. Значит, поставленная на ребро, она достигала бы в высоту только 33 сантиметра, – в 6 раз меньше человеческого роста, – а не 33 метра, как, вероятно, думалось твоему сновидцу.

– Отсюда, между прочим, следует, – сказал гость, – что если один человек на 1/8 выше другого и на столько же толще, то он должен быть вдвое тяжелее.

Монета в тысячу рублей.

– Вывод правильный.

– Во сколько же раз тогда какой-нибудь великан тяжелее карлика? – осведомилась сестра. – Наверное, раз в десять?

– В сотни раз! – ответил брат. – Самый высокий великан, о котором мне доводилось читать, был один эльзасец – на целый метр выше среднего человеческого роста. Это был, следовательно, детина в 275 сантиметров высоты.

– А карлик?

– Имеются свидетельства о взрослых карликах менее 40 сантиметров высоты, т. е. ниже исполина эльзасца в 7 раз. Значит, если бы на одну чашку весов поставить нашего великана, то на другую надо бы для равновесия поместить 7 x 7 x 7 = 343 карлика, целую толпу!

– Кстати, – вспомнила сестра, – разрешите мне такую задачу, с которою я встретилась на практике. Продаются два арбуза неодинаковых размеров. Один примерно на четвертую долю шире другого, а стоит он в 1 1/2 раза дороже. Какой из них выгоднее купить?

Задача о двух арбузах.

– Ну-ка, реши, – обратился ко мне брат.

– Если арбуз дороже в 1 1/2 раза, а шире только в 1 1/4 раза, то ясное дело, что дешевле тот арбуз, который поменьше.

– Ну нет! Ведь мы сейчас толковали о том, что если предмет шире, толще и выше в 1 1/4 раза, то объем его больше 1 1/4 x 1 1/4 x 1 1/4, т. е. вдвое. Значит, выгоднее купить крупный арбуз; он дороже только в полтора раза, а съедобного вещества в нем больше в два раза.

– Почему же за него просили не вдвое дороже, а только в полтора? – спросил гость.

– Потому что торговцы не знают геометрии. Но не знают ее и покупатели и зачастую отказываются поэтому от выгодных покупок. Можно смело утверждать, что крупные арбузы всегда выгоднее покупать, чем мелкие, потому что они расцениваются торговцами ниже их истинной стоимости; но большинство покупателей не подозревает об этом.

– Значит, и крупные яйца выгоднее покупать, нежели мелкие?

– Безусловно, они обойдутся дешевле. Впрочем, немецкие торговцы догадливее наших: продают яйца на вес; тогда ошибки в расценке не будет.

– Мне задали еще одну занятную задачу, которую я не сразу решил, – сказал гость. – Одного человека спросили, сколько весит пойманная им рыба. Он ответил: «три четверти килограмма и еще три четверти своего веса». Сколько же весила рыба?

– Ну, задача не хитрая, – ответил брат. – Ясно, что 3/4 килограмма есть вес остающейся 1/4 рыбы. Вся рыба весит в 4 раза больше, чем 3/4 килограмма, т. е. 3 килограмма. Я предложу вам задачу потруднее: есть ли на свете люди с совершенно одинаковым числом волос на голове?

– Знаю, – проворно вмешался я. – Есть. Все лысые люди имеют одинаковое число волос!

– А не лысые?

– Те, конечно, нет.

– Я о них и спрашивал. Впрочем, могу поставить вопрос даже и так: «есть ли в Москве люди с одинаковым числом волос?» – сказал брат.

– Мне думается, – вступилась за меня сестра, – что было бы совершенно невероятным совпадением, если бы такие люди нашлись. Хотя это теоретически и возможно, я смело поставила бы тысячу рублей против копейки, что не найдется ни одной пары людей с одинаковым числом волос не только в Москве, но и в целом мире.

– А я на твоем месте не ставил бы и копейки против тысячи рублей, потому что утверждать это – значит готовить себе верный проигрыш, – ответил брат. – Не скажу, чтобы было легко отыскать пару равноволосых людей, но что таких пар должно иметься сотни тысяч в одной Москве, в этом я твердо убежден.

– Как! В одной только Москве сотни тысяч пар равноволосых людей? Ты шутишь!

– Нисколько. Подумай, чего больше: людей в Москве или волос на голове?

– Людей, конечно, больше. Но при чем это здесь?

– А вот при чем. Если людей в Москве больше, чем у каждого из них имеется волос, то число волос неизбежно должно повторяться. Обычно принимают, что у человека на голове около 200000 волос; людей же в Москве раз в 8 больше. Первые 200000 москвичей пусть имеют каждый различное число волос. Но сколько волос прикажешь иметь 200001-му москвичу? Хочешь не хочешь, а придется допустить, что у него повторяется число волос одного из предыдущих московских граждан, потому что больше 200000 волос на голове ему иметь не полагается. И вообще, каждый из следующих 200000 граждан неизбежно должен иметь число волос, равное числу волос кого-нибудь из первых 200000 человек. И будь в Москве даже всего 400000 жителей, в ней имелось бы не менее 200000 пар людей с одинаковым числом волос.

– Вижу, что я с волосами опростоволосилась, – призналась сестра.

– Теперь еще задача, – продолжал брат. – Расстояние между двумя городами, стоящими на реке, пароход проходит по течению в 4 часа, против течения – в 6 часов. Во сколько времени проплывет то же расстояние щепка? Впрочем, мы лучше предоставим эту задачу тебе, – сказал брат, обращаясь ко мне. – Ведь ты уже проходил дроби; ну так значит должен с ней справиться. А сами давайте лучше загадывать числа; я буду отгадчиком. Задумайте какое-нибудь число. Умножьте его на 9. В результате зачеркните одну цифру – какую хотите, кроме нуля и 9. Теперь прочтите мне в любом порядке все остальные цифры: я отгадаю, какую вы зачеркнули.

Один за другим читали мы брату незачеркнутые цифры и едва кончали чтение, как он называл нам недостающую цифру.

– Теперь по-иному, – продолжал брат, не объясняя секрета. – Задумайте число. Припишите к нему 0. Вычтите из полученного числа задуманное. Прибавьте 63. Готово? Теперь зачеркните, как прежде, любую цифру и назовите мне остальные.

Мы выполнили требуемое – и брат безошибочно назвал каждому из нас зачеркнутую цифру.

– Пусть кто-нибудь из вас, хотя бы ты, – обратился брат ко мне, – напишет незаметно для меня какое-нибудь трехзначное число. Написал? Припиши к нему то же число еще раз. Сделано? Теперь все шестизначное число раздели на 7.

– Легко сказать: раздели на 7… Бывает, что и не делится.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Загадки, фокусы и развлечения (сборник) отзывы


Отзывы читателей о книге Загадки, фокусы и развлечения (сборник), автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x