Михаил Ивановский - Покоренный электрон

Тут можно читать онлайн Михаил Ивановский - Покоренный электрон - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая детская литература, издательство Молодая гвардия, год 1952. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Михаил Ивановский - Покоренный электрон краткое содержание

Покоренный электрон - описание и краткое содержание, автор Михаил Ивановский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Покоренный электрон - читать онлайн бесплатно полную версию (весь текст целиком)

Покоренный электрон - читать книгу онлайн бесплатно, автор Михаил Ивановский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Закон Ома — один из основных законов электротехники. Зная две величины, из входящих в формулу закона, всегда можно найти третью. Если известны сила тока и разность потенциалов — найдем сопротивление проводника: r = u/i .

Зная силу тока и сопротивление проводника, найдем напряжение: u = i/r .

Ученые встретили закон Ома с большим недоверием. Электрические явления казались им невероятно сложными, разнообразными, не поддающимися расчету. И вдруг выясняется, что все необычайно просто: i равно u, деленному на r. Простота отпугивала ученых. Они сомневались, возражали, отрицали выводы Ома.

Около двадцати лет продолжалась борьба, однако, опровергнуть закон Ома никто не смог. Исследования русского ученого Э. X. Ленца подтвердили правильность этой зависимости, и примерно с 1847 года закон Ома получил всеобщее признание.

Электротехнические меры

В 1881 году в Париже собрался первый международный конгресс электриков. В годы, предшествовавшие конгрессу, в электротехнике создалось нетерпимое положение, напоминавшее библейскую историю Вавилонской башни, которую строители якобы не могли закончить потому, что начали говорить на разных языках. Электрики с трудом понимали друг друга, — ведь в разных государствах и даже в пределах одного государства применялись самые различные единицы для измерений электрического тока. В 1880 году насчитывалось 15 различных единиц сопротивления, 12 единиц напряжения, 10 единиц силы тока. И каждый применял те единицы, какие ему казались удобнее.

На этом конгрессе, при деятельном участии знамени! ого русского физика А. Г. Столетова, разнобой в единицах устранили и установили международные меры для электричества.

По решению конгресса электрическим единицам присвоили имена выдающихся физиков, изучавших электричество.

Тогда единица количества электричества и была названа кулоном. Кулон равен тому количеству электричества, которое выделяет из раствора серебряной соли 1,118 миллиграмма серебра.

Единица силы тока получила название ампер. Ток силой в 1 ампер, протекая через водный раствор азотнокислого серебра, выделяет на катоде 1,118 миллиграмма серебра в течение одной секунды. Иначе говоря, если через какой-нибудь проводник в каждую секунду проходит 1 кулон электричества, такой ток имеет силу в 1 ампер. Обозначается ампер буквой а или А .

Единица сопротивления проводников, по предложению А. Г. Столетова, была названа омом.

Ом равен сопротивлению, которым обладает ртутный столбик постоянного сечения высотой в 106,3 сантиметра и весом в 14,4521 грамма. Обозначается ом просто — ом или греческой буквой омега — Ω .

Единица, служащая для измерения разности потенциалов или напряжения, получила название вольт.

Вольт равен напряжению, которое создает силу тока в 1 ампер в проводнике, имеющем сопротивление в 1 ом. Обозначается буквой в или V.

Единица электрической емкости называется фарадой. Фарада равна емкости проводника, который способен вместить 1 кулон электричества при напряжении в 1 вольт. Фарада — слишком большая мера. Емкость всего земного шара не составляет 1 фарады, а потому в практике для измерения электрических емкостей применяются более мелкие меры — миллионные доли фарады — микрофарады. Обозначается микрофарада так: мкф или μF .

Глава третья. Электрон перестает быть незнакомцем

Свечение разреженного газа

Красивый яркий пурпурно-розовый свет, льющийся в трубках с разреженным воздухом, привлекал внимание многих исследователей. Ученые и даже просто школьные учителя физики многократно повторяли этот замечательный опыт академика В. В. Петрова. Они стремились понять причину загадочного свечения и дать ему объяснение. Они чувствовали себя, как мореплаватели, увидевшие на горизонте берег земли, не отмеченной на карте.

Для опытов изготовляли тонкостенные, стеклянные, запаянные с обоих концов трубки. Внутри трубки находились два металлических электрода, вводы которых были пропущены сквозь стекло.

Новые достаточно мощные воздушные насосы позволяли получать в трубках разрежение значительно более высокое, чем то, которого достигал в своих опытах Петров.

Присоединив проводники от электродов трубки к полюсам большой батарей, ученые постепенно откачивали воздух.

Сначала, когда насос только начинал действовать, в трубке ничего особенного заметить не удавалось. Воздух — плохой проводник электричества. Стрелка измерительного прибора — чувствительного гальванометра, отмечавшего даже самый слабый ток, включенного в цепь вместе с трубкой, оставалась недвижной: ток не шел.

Когда насос откачал большую часть воздуха, в трубке возникало красивое свечение в виде лучистой короны. Свет в короне струился и мерцал. Это были искусственно созданные эльмовы огни. Потом разряд принимал форму яркой нити, соединявшей электроды, нить превращалась в толстый шнурок, постепенно расслаивавшийся и, наконец, разряд заполнял всю трубку.

Непрерывно откачивая воздух, насос постепенно доводил давление в трубке до одной сотой нормального. Кистевой разряд к этому моменту сменялся пурпурно-розовым свечением, возникшим в конце трубки, возле анода, а у катода появлялось синеватое или фиолетовое свечение, но оно располагалось не возле самого катода, а чуть поодаль.

Между пурпурным свечением у анода и синеватым у катода неизменно появлялся темный промежуток. Гальванометр показывал, что через трубку в это время проходит значительный ток. Чем меньше оставалось в трубке воздуха, а следовательно, чем разреженнее становился он, тем сильнее отклонялась стрелка прибора. Казалось странным: если воздух не проводит электричества, то как может проводить его почти пустое пространство — вакуум?

При плотности воздуха в одну тысячную долю нормальной, свечение с анодной стороны распространилось почти на всю трубку и стало более ярким и слоистым. Оно напоминало пурпурные волны полярных сияний. Как мы теперь знаем— пурпурно-розовое свечение трубки и есть искусственно созданное полярное сияние.

Темный промежуток между синеватым свечением у катода и ярким у анода постепенно расширялся; световые явления в трубке располагались так, как это показано на рисунке 33.

Рис 33 По мере того как откачивают воздух из катодной трубки характер - фото 34

Рис. 33. По мере того, как откачивают воздух из катодной трубки, характер свечения в ней меняется.

Делая опыты с трубками, физики изменяли состав газов и наблюдали, как при этом в трубке менялась окраска света. Особенно красивыми были световые явления в разреженном азоте. Трубки с азотом ярко сияли, струившийся из них пурпурно-красный свет озарял комнату. Столь же красиво, хотя и менее ярко, светился разреженный кислород.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Михаил Ивановский читать все книги автора по порядку

Михаил Ивановский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Покоренный электрон отзывы


Отзывы читателей о книге Покоренный электрон, автор: Михаил Ивановский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x