Михаил Ивановский - Покоренный электрон

Тут можно читать онлайн Михаил Ивановский - Покоренный электрон - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая детская литература, издательство Молодая гвардия, год 1952. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Михаил Ивановский - Покоренный электрон краткое содержание

Покоренный электрон - описание и краткое содержание, автор Михаил Ивановский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Покоренный электрон - читать онлайн бесплатно полную версию (весь текст целиком)

Покоренный электрон - читать книгу онлайн бесплатно, автор Михаил Ивановский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Из прерывного, атомного строения вещества необходимо следует и прерывное строение электричества.

Ученые сделали вывод, что электричество состоит из каких-то необычайно маленьких, уже неделимых порций, являющихся как бы «атомами» электричества.

Видимо, величину этой наименьшей и неделимой порции электричества можно определить, разделив число израсходованных кулонов на число разбитых молекул: 96500∙6,023∙10 23= 1,60∙10 -19кулона.

Это и есть заряд мельчайшей, известной современной науке порции отрицательного электричества — электрона.

Такое название этой «наименьшей порции» электричества было дано ей в 1891 году. Слово электрон быстро вошло в обиход и окончательно утратило всякую связь со своим прежним греческим значением (янтарь).

Итак, электрон получил признание и имя, но знали о нем еще слишком мало.

Он оставался таинственным незнакомцем, неизвестно где обитающим, невесть откуда появляющимся и гак же загадочно ускользающим.

Магнит и луч

Физики с новой энергией взялись за исследование явлений, происходящих в катодной трубке.

Катодный луч, который правильнее называть потоком электронов, повинуется влиянию магнита. Когда к катодной трубке подносят магнит, то под бездействием магнитного поля пути электронов, летящих от катода, искривляются, и электронный луч изгибается дугой.

Физики решили воспользоваться воздействием магнитного поля на поток электронов в разрядной трубке для того, чтобы добыть нужные сведения о массе и заряде электрона. Они рассуждали так: предположим, что в магнитном поле летит некая маленькая частичка. Если она не имеет никакого заряда, то магнитное поле на нее не подействует: частичка полетит по прямой линии.

Если же частичка несет электрический заряд, это равноценно электрическому току, ее путь в магнитном поле искривится. Чем больше будет заряд, тем сильнее отклонится в сторону частица. Но каждая частичка обладает также и некоторой массой и, следовательно, инерцией. Чем тяжелее будет частичка, тем труднее заставить ее свернуть с прямого пути. Значит, заряд содействует, а масса — инерция противодействуют искривлению пути электронов в разрядной трубке.

Для физиков это оказалось довольно досадным обстоятельством. Ведь частички с большим зарядом и большой массой отклоняются в магнитном поле точно так же, как и частички с малым зарядом и малой массой. Отличить, где какая масса или где какой заряд — невозможно.

Наблюдая отклонение электронов в магнитном поле, ученые не смогли определить отдельно ни массы, ни заряда электрона, а только узнали, какой заряд приходится на единицу массы электрона. Иными словами, удалось найти отношение заряда электрона к его массе.

Для точных измерений построили особую катодную трубку. В этой трубке, неподалеку от катода, поместили металлическую пластинку с небольшим отверстием в центре.

Металлическая пластинка предназначалась для того, чтобы задерживать большую часть электронов. Через отверстие в пластинке мог прорваться только узкий пучок лучей. Вот этот тонкий, как проволочка, пучок лучей и послужил ученым основой для необходимых опытов.

С помощью своих приборов физики измерили: магнитное поле, величину искривления электронного луча под влиянием магнита и разность потенциалов, приложенную к катодной трубке (от этой разности зависит скорость электрона).

Оказалось, что заряд электрона, выраженный в кулонах, больше его массы, выраженной в граммах, почти в 1760 тысяч раз. Иначе говоря, физики получили такую формулу: е/м = 1,76∙10 3 кулонов/грамм, где буквой е обозначен заряд электрона, а буквой м — его масса. В отдельности же величины е и м по-прежнему оставались неизвестными.

Правда, вычисление, сделанное на основании опытов Фарадея, дало величину заряда электрона: е = 1,60∙10 -19кулона. Подставив это значение е в формулу, можно узнать, чему равно м — масса! Для этого надо 1,60∙10 -19разделить на 1,76∙10 3, и мы получим 9,1∙10 -28грамма. Это и будет масса одного электрона.

Однако никто тогда не знал и никто не доказал, что наименьшая порция электричества, которая переносится одним атомом при электролизе, равна заряду электрона, летящего в катодном луче. Это еще предстояло доказать, а потому величина массы электрона в 9,1∙10 -28грамма нуждалась в подтверждении и проверке опытом.

Влияние света на искру

В восьмидесятых годах прошлого столетия замечательный русский ученый, профессор Московского университета Александр Григорьевич Столетов решил разобраться в одном странном явлении, которое было замечено немецким физиком Герцем.

Во время одного из своих опытов Герцу показалось, что свет электрической искры, проскакивающей между шариками в электрической машине, облегчает образование искры в другом приборе. Герц проверил свое наблюдение и установил, что такое же действие оказывает на искру электрическая дуга. Ее яркий сильный свет, падая на искровой промежуток, как-то помогает появлению искр. На свету искры проскакивают при меньшем напряжении, чем в отсутствие дугового освещения.

Причины этого Герц не нашел и сообщение о своих наблюдениях опубликовал без всякого объяснения.

В том, что связь между световыми и электрическими явлениями существует, Столетов не сомневался, но искру он считал неподходящим объектом исследования. Искра вспыхивает на мгновение, быстро гаснет. Измеряя что-либо при столь скоротечном явлении, легко ошибиться, а исследовать, не измеряя, — бессмысленно.

Если свет облегчает электрическому току путь через воздух, думал Столетов, то его влияние должно сказаться и на слабом токе обычной гальванической батареи, а ток от гальванической батареи можно измерять с большой точностью. Для этого существуют чувствительные гальванометры.

Свет рождает ток

Вместе со своим помощником, талантливым изобретателем И. Ф. Усагиным, Столетов построил задуманный прибор. Они вырезали из цинковой пластинки круг диаметром в 22 сантиметра, тщательно очистили его и укрепили стоймя на вертикальном изолированном штативе. Затем из металлической сетки они вырезали круг того же размера и натянули его на проволочный обод. Сетчатый кружок укрепили на стойке так же, как и цинковый.

Из лабораторного проекционного фонаря с электрической дугой Усагин вынул все линзы. Столетов знал, что стекло задерживает и поглощает ультрафиолетовые лучи, способствующие образованию электрической искры. Была также подготовлена новая батарея и подобран гальванометр (рис. 37).

Рис 37 Когда луч света пронизывая сетчатый электрод падал на цинковый - фото 38

Рис. 37 . Когда луч света, пронизывая сетчатый электрод, падал на цинковый кружок, через воздушный промежуток между электродами шел ток.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Михаил Ивановский читать все книги автора по порядку

Михаил Ивановский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Покоренный электрон отзывы


Отзывы читателей о книге Покоренный электрон, автор: Михаил Ивановский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x