Леонид Гальперштейн - Здравствуй, физика!
- Название:Здравствуй, физика!
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1967
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Леонид Гальперштейн - Здравствуй, физика! краткое содержание
А так хочется познакомиться с физикой поскорее! Ведь ты уже слышал, что эта замечательная наука нужна всем: токарю и пахарю, врачу и шоферу, космонавту и водолазу, ученому и клоуну, повару и инженеру.
Но, оказывается, физика — это не только научные книги и сложные приборы, не только огромные лаборатории. Физика — это еще и фокусы, показанные в кругу друзей, это смешные истории и забавные игрушки-самоделки. Физические опыты можно делать с поварешкой, стаканом, картофелиной, карандашом. Гвозди и соломинки, спички и консервные банки, обрезки картона и даже капельки воды — все пойдет в дело!
И когда ты начнешь изучать физику в школе, эта чудесная наука уже не покажется тебе такой загадочной и мудреной. Ты скажешь ей, как старой, доброй знакомой:
— Здравствуй, физика!
Здравствуй, физика! - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Да потому, что его ножки распрямляются. Ты их изогнул, а присоска задержала в изогнутом положении. Ножки стремятся выпрямиться, расправиться. И как только присоска отпускает, они тут же расправляются. Щелк! Кузнечик взлетает в воздух.
Прыгающее кольцо
Похожий опыт можно сделать и с резиновым кольцом, вырезанным из велосипедной или автомобильной камеры. Иногда такие кольца можно найти готовыми; они надеваются на особые «застегивающиеся» пробки бутылок.
Наружный диаметр кольца 20 мм, диаметр отверстия 8 мм.
Скрути кольцо, просунув часть его окружности сквозь отверстие в середине, и положи на стол. Через несколько секунд кольцо распрямится, да так резко, что подскочит на 20–30 см вверх.

Причина здесь та же, что и в опыте с игрушечным кузнечиком. Резина — сжатая, изогнутая, перекрученная — стремится восстановить свою форму. Она постепенно «выпутывается» из середины кольца и наконец распрямляется. Резина, как и сталь, обладает свойством восстанавливать свою форму. Это свойство называют упругостью.
Упрямая звездочка
Из свежего хлебного мякиша слепи звездочку с шестью лучами-отростками. Она должна быть величиной с грецкий орех.
Казалось бы, такую звездочку ничего не стоит смять. Но попробуй ударить ее об пол. Можешь не осторожничать, бросай что есть силы! Звездочке все равно ничего не сделается.
Упругие отростки спружинят и выпрямятся, да так резко, что подбросят упрямую звездочку высоко вверх!

И сколько бы раз ты ни бросал звездочку, ничего с ней не случится. Она будет подпрыгивать как ни в чем не бывало. Упрямую звездочку спасает упругость!
Есть только одно обязательное условие: звездочку нужно слепить из совершенно свежего хлеба. Иначе она будет ломаться.
Упругие монеты
Для этого опыта подбери несколько одинаковых монет, например пятаков. Они должны быть ровными, непогнутыми. Положи два из них на стол на некотором расстоянии один от другого. Теперь резко щелкни по одному пятаку так, чтобы он скользнул по столу и ударил по другому. Если попадешь точно, «лоб в лоб», то первый пятак почти сразу же остановится, а второй отскочит и как бы продолжит движение первого.
Почему так получилось? Опять-таки из-за упругости. Ударившись одна о другую, обе монеты в первый момент сжимаются, Но упругость стремится восстановить их первоначальную форму. Сила упругости «расталкивает» столкнувшиеся монеты в противоположные стороны. Поэтому первая, ударившая монета получает свой удар обратно и останавливается, А вторая монета отскакивает и продолжает движение первой.

Опыт можно усложнить, разложив на столе несколько монет рядком на одной линии так, чтобы они касались одна другой. Что получится, если ударить еще одной монетой в крайнюю монету ряда? Ударившая монета остановится как вкопанная. Ее толчок передастся по всему ряду. Одна за другой монеты будут сжиматься и затем снова разжиматься. При этом каждая ударившая монета будет получать свой толчок обратно, а каждая ударенная передавать его дальше. И только самой последней в ряду монете нечему будет передать толчок и не от чего получить его обратно. Поэтому она, разжимаясь, оттолкнется от предпоследней монеты и отскочит!
Этот опыт можно проделать и с шашками. Крайнюю в ряду шашку придержи сверху пальцем и ударь деревянной линейкой по ребру. С другого конца отскочит шашка, и всегда только одна.
Такие же опыты можно проделать с бильярдными или крокетными шарами. Только во всех случаях нужно попадать точно, «лоб в лоб». При косом ударе ударившая монета или шар не останавливаются, а только отклоняются в сторону и замедляют свое движение. А ударенное тело отскакивает под углом в сторону.
Твердое, да не совсем!
Заводя часы, ты закручиваешь пружину. Упругая стальная пружина стремится восстановить свою первоначальную форму. Пружина раскручивается, часы идут. Таким же образом действуют и все заводные игрушки.
Заводя катушку-ползушку или модель самолета, парохода, подводной лодки с резиновым мотором, ты скручиваешь резину. Упругая резина стремится восстановить свою первоначальную форму. Резина раскручивается и вращает воздушный или водяной винт. Модель приходит в движение.
Все твердые тела, о которых мы до сих пор говорили, держались молодцами. Шкаф набивал мальчику шишку. Диван распрямлялся, как только с него вставали. Восстанавливали прежнюю форму ножки игрушечного кузнечика, резинки, пружины, монеты, хлебные звездочки. Но всегда ли бывает так?
Вспомни, не видел ли ты когда-нибудь твердых тел: поломанных, разорванных, проколотых, разрубленных, разбитых, изогнутых, сплющенных?
Конечно же, видел. Шкаф ломается, если по нему стукнуть не лбом, а кувалдой. Пружина лопается, если перекрутить ее. Перекрученная резина тоже лопается, а чрезмерно растянутая — рвется. Гвозди сгибаются в дугу под ударами молотка. Хлебную звездочку можно смять, если ударить по ней кулаком, а еще вернее — если медленно надавить ладонью.
Выходит, что каждое твердое тело остается твердым, восстанавливает свою форму только до тех пор, пока его не сжали, не растянули, не изогнули, не ударили слишком сильно. Тут оно меняет свою форму. Но замечательно то, что, изогнутое, сплющенное, разбитое на куски, оно потом опять сохраняет свою твердость. Черепок тарелки, обломок пружины, кусок гвоздя ничуть не «мягче» целой тарелки, целой пружины, целого гвоздя.
А что у него внутри?
Многие твердые тела в изломе выглядят шероховатыми. Например, лопнувшая пружина, разорванная проволока, расколотый камень, сломанный гвоздь.
Если посмотреть на этот излом в сильную лупу или в микроскоп, мы увидим, что он зернистый. Эти микроскопические зерна твердых тел обычно имеют правильную форму. Их называют кристаллами.
Очень красивы, например, кристаллы льда. Зимой, выйдя на улицу, рассмотри под лупой снежинки, которые упадут тебе на рукав. Ты увидишь изумительно правильные звездочки, составленные из иголочек льда. И все эти звездочки разные. Кажется, невозможно найти две совершенно одинаковые. Ученые насчитали сотни видов снежинок. Но все они шестилучевые!
Обычно кристаллы очень малы, их можно разглядеть только при большом увеличении. Но попадаются иногда и крупные кристаллы, и даже огромные. Таковы, например, кристаллы горного хрусталя, которые можно видеть в коллекциях минералов.
Читать дальшеИнтервал:
Закладка: