А. Красько - Схемотехника аналоговых электронных устройств
- Название:Схемотехника аналоговых электронных устройств
- Автор:
- Жанр:
- Издательство:Томский государственный университет систем управления и радиоэлектроники
- Год:2005
- Город:Томск
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
А. Красько - Схемотехника аналоговых электронных устройств краткое содержание
В учебном пособии рассмотрены теоретические основы и принципы действия аналоговых устройств на биполярных и полевых транзисторах. Анализируются основные схемы, используемые в аналоговых трактах типовой радиоэлектронной аппаратуры, приводятся расчетные формулы, позволяющие определить элементы принципиальных схем этих устройств по требуемому виду частотных, фазовых и переходных характеристик. Излагаются основы построения различных функциональных устройств на основе операционных усилителей. Рассмотрены так же ряд специальных вопросов с которыми приходится сталкиваться разработчикам аналоговых электронных устройств – оценка нелинейных искажений, анализ устойчивости, чувствительности и др.
Пособие предназначено для студентов, обучающихся по направлениям подготовки 552500, 654200 – «Радиотехника», 654100 – «Электроника и микроэлектроника», и может быть полезно для преподавателей и научных работников.
Схемотехника аналоговых электронных устройств - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Более широкий динамический диапазон перемножаемых напряжений при меньшей погрешности обеспечивают логарифмические перемножители построенные по принципу "логарифмирование-антилогарифмирование". Схема подобного ПАС приведена на рисунке 7.23.

Рисунок 7.23. Логарифмический умножитель
Здесь ОУ DA 1 и DA 2 производят логарифмирование входных напряжений, а DA 3 используется в качестве сумматора, на выходе которого напряжение равно:
U 0= k 1(ln u x + ln u y ) = k 2ln u xu y .
С помощью ОУ DA 4производят антилогарифмирование
U вых = k 3antiln U 0= k 3 u xu y
Следует заметить, что в данных выражениях используются напряжения, нормированные относительно одного вольта. Коэффициенты пропорциональности k 1, k 2, k 3 определяются резистивными элементами, включенными в цепи ООС используемых ОУ. Большим недостатком подобных ПАС является сильная зависимость диапазона рабочих частот от амплитуд входных сигналов. Так, если при входном напряжении 10В верхняя частота перемножаемых напряжений может составлять 100кГц, то при входном напряжении 1В полоса рабочих частот сужается до 10кГц [13].
Принцип логарифмирования и антилогарифмирования используется в наиболее распространенном способе построения четырехквадрантных ПАС с нормировкой токов, которые обладают наилучшей совокупностью таких параметров, как линейность, широкополосность, температурная стабильность. Обычно они имеют дифференциальные входы, что расширяет их функциональные возможности. Перемножители с нормировкой токов выполняются по интегральной полупроводниковой технологии.
Упрощенная принципиальная схема ИМС ПАС с нормировкой токов типа 525ПС1 приведена на рисунке 7.24.
Устройство содержит сложный дифференциальный каскад на транзисторах VT 7, …, VT 10. Перекрестные связи коллекторов этих транзисторов обеспечивают инверсию сигналов, необходимую для четырехквадрантного умножения. Входные каскады на транзисторах VT 3, …, VT 6 и VT 11, …, VT 14 преобразуют входные напряжения u x и u y в токи. С помощью транзисторов в диодном включении VT 1 и VT 2 происходит логарифмирование токового сигнала по входу Y. Антилогарифмирование сигнала Y и умножение его на сигнал X осуществляется усилителем на транзисторах VT 7, …, VT 10.

Рисунок 7.24. Упрощённая схема ИМС перемножителя 525ПС1
В рассматриваемом устройстве связь между входными и выходными сигналами может быть представлена в виде отношения токов. Выходной ток перемножителя определяется соотношением [12]

где I X и I Y — токи, протекающие через резисторы R X и R Y ; I pX и I pY — рабочие токи в каналах X и Y.
Выходное напряжение, снимаемое с одного из сопротивлений нагрузки, равно [12]

где — масштабный коэффициент.
Все приведенные на рисунке 7.24 резисторы, кроме R 1 и R 2, являются внешними. Их выбор зависит от конкретных требований к ПАС.
Для получения на выходе ПАС нулевого напряжения при равных нулю входных напряжениях предусмотрена подстройка с помощью переменных резисторов R 4 и R 5. Если перемножитель работает только при одной полярности одного из входных сигналов, то он называется смещенным. Для превращения четырехквадрантного ПАС в смещенный достаточно на один из входов подать такое постоянное смещение, при котором сигналы на этом входе всегда оказываются меньше напряжения смещения.
Возможности реализации разнообразных устройств электронной аппаратуры на перемножителях иллюстрирует рисунок 7.25.

Рисунок 7.25. Схемы аналоговых электронных устройств на основе ПАС
Принцип работы этих устройств ясен из приведенных схем и расчетных соотношений, пояснения, пожалуй, требует лишь схема удвоителя частоты (рисунок 7.25в). Если на оба входа перемножителя подают напряжение одной и той же частоты, то на выходе ПАС напряжение подчиняется следующему тригонометрическому тождеству

Из приведенного выражения видно, что любая входная частота f будет удваиваться при прохождении через устройство возведения в квадрат, либо делиться на два при прохождении через извлекатель корня квадратного (рисунок 7.25г). Более подробная информация о ПАС содержится в [12].
7.5. Компараторы
Компаратором называется устройство, позволяющее осуществить сравнение измеряемого входного напряжения U вх с опорным напряжением U оп . Алгоритм работы компаратора описывается выражениями:
U вых = U 1, если U вх < U оп ,
U вых = U 0, если U вх > U оп .
Простейшая схема компаратора и его передаточная характеристика представлены на рисунке 7.26.

Рисунок 7.26. Простейший компаратор
Вследствие большого коэффициента усиления ОУ на его выходе получается последовательность практически прямоугольных импульсов, причем положение моментов переключения соответствует равенству U вх = U оп . Если входы ОУ поменять местами, то U вых поменяет знак. Входные диоды служат для защиты ОУ от большого дифференциального входного напряжения. Выходное напряжение компаратора может быть использовано для управления каким-либо устройством, например, широтно-импульсным модулятором. При U оп =0 получим так называемый нуль-индикатор или детектор нулевого уровня.
Из-за конечного значения коэффициента усиления компаратора возможно плавное нарастание U вых (рисунок 7.27а).

Рисунок 7.27. Компаратор с ПОС
Если плавное срабатывание нежелательно, то применяют компаратор на основе ОУ с цепью ПОС (рисунок 7.27б). Если опорное напряжение не подается, то такой компаратор называют еще триггером Шмитта. Как видно из рисунка 7.27в, такой компаратор обладает гистерезисом, что объясняется наличием цепи ПОС. Переключение схемы в состояние U 2 происходит при достижении входным напряжением уровня срабатывания U ср , а возвращение в исходное состояние U вых = U 1 — при снижении входного напряжения до уровня отпускания U отп . Значения входных пороговых напряжений и ширина зоны гистерезиса определяются по формулам:
Читать дальшеИнтервал:
Закладка: