Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия

Тут можно читать онлайн Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия - бесплатно полную версию книги (целиком) без сокращений. Жанр: Все книги в жанре Компьютерное "железо", издательство Издательский дом «Питер», год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия краткое содержание

Аппаратные интерфейсы ПК. Энциклопедия - описание и краткое содержание, автор Михаил Гук, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.

Аппаратные интерфейсы ПК. Энциклопедия - читать онлайн бесплатно полную версию (весь текст целиком)

Аппаратные интерфейсы ПК. Энциклопедия - читать книгу онлайн бесплатно, автор Михаил Гук
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 71 Временные диаграммы чтения и записи динамической памяти Микросхемы - фото 60

Рис. 7.1. Временные диаграммы чтения и записи динамической памяти

Микросхемы DRAM имеют множество временных параметров, из которых выделим несколько важнейших, с которыми иногда приходится сталкиваться при настройке параметров циклов в CMOS Setup.

♦ Время доступа T RAC(RAS Access Time) — задержка появления действительных данных на выходе относительно спада импульса RAS (см. рисунок). Этот основной параметр спецификации памяти, измеряемый в единицах или десятках наносекунд, обычно является последним элементом обозначения микросхем и модулей (ххх-7 и ххх-70 означают время доступа 70 нс). Для современных микросхем характерно время доступа 40-100 нс.

♦ Время цикла (cycle time) — минимальный период между началами соседних циклов обращения (T WCдля записи и T RCдля чтения). Для современных микросхем лежит в пределах 75-125 нс.

♦ Время цикла (период следования импульсов CAS#) в страничном режиме T PC(Page CAS Time — см. п. 7.1.1).

♦ Длительность сигналов RAS#и CAS#— T RASи T CAS— минимальная длительность активной части (низкого уровня) стробирующих сигналов (см. рисунок).

♦ Время предварительного заряда RAS и CAS T RP, и T CP(RAS и CAS Precharge Time) — минимальное время нахождения соответствующих сигналов в высоком состоянии.

♦ Время задержки между импульсами RAS#и CAS#T RCD(RAS to CAS Delay).

♦ Задержка данных относительно импульса CAS#(T CAC).

Все эти параметры и определяют предел производительности памяти. В табл. 7.2 приведены типовые значения временных параметров, отвечающих конкретной спецификации быстродействия. На них можно ориентироваться при задании циклов обращений к памяти в CMOS Setup, но при этом необходимо учитывать, что микросхемы различных производителей могут несколько отличаться друг от друга по отдельным параметрам.

Таблица 7.2. Ключевые параметры временной диаграммы DRAM

Спецификация быстродействия T RC, нс T RAC, нс T PC, нс T CAS, нс T CP, нс
-4 75 40 15 6 6
-5 100 50 20 8 8
-6 104 60 25 10 10
-7 110 70 30 12 12

Отметим, что все, даже самые «модные» типы памяти — SDRAM, DDR SDRAM и Rambus DRAM — имеют запоминающее ядро, которое обслуживается описанным выше способом.

Поскольку обращения (запись или чтение) к различным ячейкам памяти обычно происходят в случайном порядке, то для поддержания сохранности данных применяется регенерация (Memory Refresh — обновление памяти) — регулярный циклический перебор ее ячеек (обращение к ним) с холостыми циклами. Циклы регенерации могут организовываться разными способами, классическим является цикл без импульса CAS#, сокращенно именуемый ROR (RAS Only Refresh — регенерация только импульсом RAS#). Другой вариант — цикл CBR (CAS Before RAS), поддерживаемый практически всеми современными микросхемами памяти. В этом цикле регенерации спад импульса RAS#осуществляется при низком уровне сигнала CAS#(в обычном цикле обращения такой ситуации не возникает). Адрес регенерируемой строки для цикла COR генерирует контроллер памяти, для CBR этот адрес берется из внутреннего счетчика каждой микросхемы памяти. Цикл скрытой регенерации (hidden refresh) является разновидностью цикла CBR.

Микросхемы синхронной динамической памяти выполняют циклы CBR по команде Auto Refresh . А по команде Self Refresh или Sleep Mode они выполняют автономную регенерацию в энергосберегающем режиме.

7.1.1. Асинхронная память — FPM, EDO и BEDO DRAM

Временная диаграмма, приведенная на рис. 7.1, может быть модифицирована для случая последовательного обращения к ячейкам, принадлежащим к одной строке матрицы. В этом случае адрес строки выставляется на шине только один раз и сигнал RAS#удерживается на низком уровне на время всех последующих циклов обращений, которые могут быть как циклами записи, так и чтения. Такой режим обращения называется режимом быстрого страничного обмена FPM (Fast Page Mode), или просто режимом страничного обмена (Page Mode), его временная диаграмма приведена на рис. 7.2. Понятие «страница» на самом деле относится к строке (row), а состояние с низким уровнем сигнала RAS#называется «открытой страницей». Преимущество данного режима заключается в экономии времени за счет исключения фазы выдачи адреса строки из циклов, следующих за первым, что позволяет повысить производительность памяти. Режим FPM поддерживает и самая обычная асинхронная память, называемая стандартной (Std).

Рис 72 Страничный режим считывания стандартной памяти DRAM FPM Память EDO - фото 61

Рис. 7.2. Страничный режим считывания стандартной памяти DRAM (FPM

Память EDO DRAM (Extended или Enhanced Data Out) содержит регистр-защелку (data latch) выходных данных, что обеспечивает некоторую конвейеризацию работы для повышения производительности при чтении. Регистр «прозрачен» при низком уровне сигнала CAS#, а по его подъему фиксирует текущее значение выходных данных до следующего его спада. Перевести выходные буферы в высокоимпедансное состояние можно либо подъемом сигнала ОЕ#(Output Enable), либо одновременным подъемом сигналов CAS#и RAS#, либо импульсом WE#, который при высоком уровне CAS#не вызывает записи (в PC управление по входу ОЕ#практически не используют).

Временная диаграмма работы с EDO-памятью в режиме страничного обмена приведена на рис. 7.3; этот режим иногда называют гиперстраничным режимом обмена НРМ (Hyper Page mode). Его отличие от стандартного заключается в подъеме импульса CAS#до появления действительных данных на выходе микросхемы. Считывание выходных данных может производиться внешними схемами вплоть до спада следующего импульса CAS#, что позволяет экономить время за счет сокращения длительности импульса CAS#. Время цикла внутри страницы уменьшается, повышая производительность в страничном режиме на 40 %.

Рис 73 Страничный режим считывания EDO DRAM HPM Установка EDO DRAM вместо - фото 62

Рис. 7.3. Страничный режим считывания EDO DRAM (HPM)

Установка EDO DRAM вместо стандартной памяти в неприспособленные для этого системы может вызвать конфликты выходных буферов устройств, разделяющих с памятью общую шину данных. Скорее всего, этот конфликт возникнет с соседним банком памяти при чередовании банков. Для отключения выходных буферов EDO-памяти внутри страничного цикла обычно используют сигнал WE#, не вызывающий записи во время неактивной фазы CAS#(рис. 7.4, кривая а ). По окончании цикла буферы отключаются лишь по снятию сигнала RAS#(рис. 7.4, кривая б ).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Михаил Гук читать все книги автора по порядку

Михаил Гук - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Аппаратные интерфейсы ПК. Энциклопедия отзывы


Отзывы читателей о книге Аппаратные интерфейсы ПК. Энциклопедия, автор: Михаил Гук. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x