Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия
- Название:Аппаратные интерфейсы ПК. Энциклопедия
- Автор:
- Жанр:
- Издательство:Издательский дом «Питер»
- Год:2002
- Город:Санкт-Петербург
- ISBN:5-94723-180-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия краткое содержание
Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.
Аппаратные интерфейсы ПК. Энциклопедия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 7.4. Управление выходным буфером EDO DRAM
Из принципиального различия в работе выходных буферов следует, что в одном банке не стоит смешивать EDO и стандартные модули. EDO-модули поддерживаются не всеми чипсетами и системными платами (в большей мере это относится к системным платам для процессоров 486).
В памяти BEDO DRAM (Burst EDO) кроме регистра-защелки выходных данных, стробируемого теперь по фронту импульса CAS#
, содержится еще и внутренний счетчик адреса колонок для пакетного цикла. Это позволяет выставлять адрес колонки только в начале пакетного цикла (рис. 7.5), а во 2-й, 3-й и 4-й передачах импульсы CAS#
только запрашивают очередные данные. В результате удлинения конвейера выходные данные как бы отстают на один такт сигнала CAS#
, зато следующие данные появляются без тактов ожидания процессора, чем обеспечивается лучший цикл чтения. Задержка появления первых данных пакетного цикла окупается повышенной частотой приема последующих. BEDO-память применяется в модулях SIMM-72 и DIMM, но поддерживается далеко не всеми чипсетами.

Рис. 7.5. Страничный режим считывания BEDO DRAM
Вышеперечисленные типы памяти являются асинхронными по отношению к тактированию системной шины компьютера. Это означает, что все процессы инициируются только импульсами RAS#
и CAS#
, а завершаются через какой-то определенный (для данных микросхем) интервал. На время этих процессоров шина памяти оказывается занятой, причем в основном ожиданием данных.
7.1.2. Синхронная память — SDRAM и DDR SDRAM
Микросхемы синхронной динамической памяти SDRAM (Synchronous DRAM) представляет собой конвейеризированные устройства. По составу сигналов интерфейс SDRAM близок к обычной динамической памяти: кроме входов синхронизации здесь есть мультиплексированная шина адреса, линии RAS#
, CAS#
, WE#
(разрешение записи) и CS#
(выбор микросхемы) и линии данных (табл. 7.3). Все сигналы стробируются по положительному перепаду синхроимпульсов, комбинация управляющих сигналов в каждом такте кодирует определенную команду . С помощью этих команд организуется та же последовательность внутренних сигналов RAS
и CAS
, которая рассматривалась и для памяти FPM.
Таблица 7.3. Назначение сигналов в микросхемах SDRAM
Сигнал | I/O | Назначение |
---|---|---|
CLK | I | Clock Input — синхронизация, действует по положительному перепаду |
CKE | I | Clock Enable — разрешение синхронизации (высоким уровнем). Низкий уровень переводит микросхему в режим Power Down, Suspend или Self Refresh |
CS# | I | Chip Select — разрешение декодирования команд (низким уровнем). При высоком уровне новые команды не декодируются, но выполнение начатых продолжается |
RAS#, CAS#, WE# | I | Row Address Strobe, Column Address Strobe, Write Enable — сигналы, определяющие операцию (код команды) |
BS0, BS1 или BA0, BA1 | I | Bank Selects или Bank Address — выбор банка, к которому адресуется команда |
А[0:12] | I | Address — мультиплексированная шина адреса. В циклах Bank Activate определяют адрес строки. В циклах Read/Write линии A[0:9] и А11 задают адрес столбца. Линия А10 в циклах Read/Write включает режим автопредзаряда (при А10=1), в цикле Precharge A10=1 задает предзаряд всех банков (независимо от BS0, BS1) |
DQx | I/O | Data Input/Output — двунаправленные линии данных |
DQM | I | Data Mask — маскирование данных. В цикле чтения высокий уровень переводит шину данных в высокоимпедансное состояние (действует через 2 такта). В цикле записи высокий уровень запрещает запись текущих данных, низкий — разрешает (действует без задержки) |
V SS, V DD | – | Общий провод и питание ядра |
V SSQ, V DDQ | – | Общий провод и питание выходных буферов. Изолированы от питания ядра для снижения помех |
Данные для первой передачи пакета записи устанавливаются вместе с командой WR
. Данные для остальных передач пакета передаются в следующих тактах. Первые данные пакета чтения появляются на шине через определенное количество тактов после команды. Это число, называемое CAS Latency (CL), определяется временем доступа T CACи тактовой частотой. Остальные данные пакета выдаются в последующих тактах. Временные диаграммы работы SDRAM приведены на рис. 7.6. Здесь показана команда записи WR
, за которой следует команда чтения RD
из той же страницы, предварительно открытой командой ACT
. Далее страница закрывается командой PRE
. Длина пакета 2, CL = 3.

Рис. 7.6. Временные диаграммы пакетных циклов SDRAM: А и В — данные для записи по адресу R0/C0 и R0/C0+1, С и D — данные, считанные по адресу R0/C1 и R0/C1 +1
Регенерация (цикл CBR с внутренним счетчиком адреса регенерируемой строки) выполняется по команде REF
, которую можно вводить только при состоянии покоя ( idle ) всех банков.
Микросхемы SDRAM оптимизированы для пакетной передачи. У них при инициализации программируется длина пакета (burst length=1, 2, 4, 8 элементов), порядок адресов в пакете (wrap mode: interleave/linear — чередующийся/линейный) и операционный режим. Пакетный режим может включаться как для всех операций (normal), так и только для чтения (Multiple Burst with Single Write). Этот выбор позволяет оптимизировать память для работы либо с WB, либо с WT-кэшем.
Обратим внимание, что внутренний счетчик адреса работает по модулю, равному запрограммированной длине пакетного цикла (например, при burst length=4 он не позволяет перейти границу обычного четырехэлементного пакетного цикла).
Пакетные циклы могут прерываться (принудительно завершаться) последующими командами. При этом оставшиеся адреса отбрасываются, и прерывающий пакет будет иметь полную длину (если его самого не прервут).
В команде Write
имеется возможность блокирования записи данных любого элемента пакета — для этого достаточно в его такте установить высокий уровень сигнала DQM
. Этот же сигнал используется и для перевода в высокоимпедансное состояния буферов данных при операции чтения.
Микросхемы SDRAM имеют средства энергосбережения , для управления ими используется вход разрешения синхронизации CKE.
В режиме саморегенерации (Self Refresh) микросхемы периодически выполняют циклы регенерации по внутреннему таймеру и не реагируют на внешние сигналы, поэтому внешняя синхронизация может быть остановлена.
Режимы пониженного потребления (Power Down Mode) устанавливаются при переводе CKE
в низкий уровень командой NOP
или INHBT
. В этих режимах микросхема не воспринимает команд. Поскольку в данных режимах регенерация не выполняется, длительность пребывания в них ограничена периодом регенерации.
Интервал:
Закладка: