Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия

Тут можно читать онлайн Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия - бесплатно полную версию книги (целиком) без сокращений. Жанр: Все книги в жанре Компьютерное "железо", издательство Издательский дом «Питер», год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия краткое содержание

Аппаратные интерфейсы ПК. Энциклопедия - описание и краткое содержание, автор Михаил Гук, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.

Аппаратные интерфейсы ПК. Энциклопедия - читать онлайн бесплатно полную версию (весь текст целиком)

Аппаратные интерфейсы ПК. Энциклопедия - читать книгу онлайн бесплатно, автор Михаил Гук
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 710 Транзакции записи RDRAM В микросхемах RDRAM применяется механизм - фото 69

Рис. 7.10. Транзакции записи RDRAM

В микросхемах RDRAM применяется механизм отложенной , или буферированной , записи. Данные для записи (принятый пакет D) сначала помещаются в буфер, из которого несколько позже они выгружаются в усилители считывания-записи (sens amp) по явной команде выгрузки (retire) или автоматически. Буфер записи хранит сами данные, а также номер банка и адрес столбца (но не строки). Буферизация записи позволяет контроллеру посылать команду записи на T RTRраньше, чем этого требует параметр T RCD, что повышает коэффициент использования шины.

Конвейерное выполнение операций RDRAM обеспечивается многобанковой организацией с отдельными усилителями считывания. Пакеты команд по линиям ROW и COL могут идти сплошным потоком, при этом на шине может присутствовать до четырех транзакций. При произвольных обращениях увеличению производительности способствует большое количество банков, практически недостижимое в памяти SDRAM.

Регенерация осуществляется по команде, адресуемой к определенному банку одной или всех микросхем; за период регенерации эта команда должна выдаваться для всех банков.

Память RDRAM отличается высоким энергопотреблением. Средства управления энергопотреблением отключают питание неиспользуемых узлов, однако за 100-кратное снижение мощности в самом экономичном режиме приходится расплачиваться 250-кратным увеличением времени доступа. Микросхемы RDRAM требуют периодической (раз в 100 мс) подстройки выходного тока и термокалибровки; для этих целей имеются специальные команды. Во время подстройки тока микросхемы способны сообщать о своем перегреве.

Вспомогательная шина с сигналами SCK, CMDи SIOслужит для обмена данными с управляющими регистрами и вывода микросхем из состояний пониженного потребления ( PDN и NAP ). Информация по этой шине тоже передается пакетами.

Управляющие регистры хранят информацию об адресе микросхемы, управляют работой микросхемы в различных режимах, содержат счетчики регенерации для банков и строк, параметры настройки временных циклов. В них же можно прочитать информацию о конкретной микросхеме — организация, версия протокола и т. п. В составе управляющих есть и тестовые регистры.

Инициализация памяти включает определение наличия микросхем на шине, назначение им идентификаторов и программирование их параметров. После сброса микросхемы не имеют собственных адресов, а линии SIO0и SIO1у них соединены. В таком состоянии контроллер по шине CMDпосылает широковещательную команду на разъединение линий, после чего для него по линии SIOоказывается доступной только ближайшая микросхема канала. Ей назначается адрес ( SDEVID) и дается команда на соединение линий, в результате к контроллеру подключается вторая микросхема. Она будет пронумерована очередной командой, заставляющей все доступные ненумерованные микросхемы (то есть именно ее) принять указанный номер. Далее замыкаются ее линии SIO, и этот процесс продолжается до самой дальней микросхемы.

После завершения этого «переучета» включается нормальная синхронизация, и дается время для установления режима схем DLL. После двукратной активации и предварительного заряда каждого банка каждой микросхемы память готова к определению доменов синхронизации и назначению каждой микросхеме соответствующих параметров задержек. Также им должны быть присвоены идентификаторы в канале ( DEVID), которые могут и не совпадать со значениями SDEVID(идентификатором на последовательной шине).

Обязательным «фирменным» компонентом ОЗУ на RDRAM является контроллер памяти . В его задачу входит обслуживание микросхем памяти, установленных в канале, по запросам, поступающим со стороны интерфейса системной шины компьютера. Часть контроллера, обращенная к каналу, инвариантна к архитектуре компьютера. Именно она «знает» протокол RDRAM и является продуктом фирмы Rambus. Контроллер RDRAM встраивается в чипсеты для процессоров P6 (например, 1820, 1840), Pentium 4 (1850 с 32-разрядным каналом, то есть уже под пары модулей RIMM) и других архитектурных линий.

В соответствии со спецификацией RDRAM в одном канале может быть до трех слотов под RIMM, и их интерфейсные линии соединяются змейкой. В слоты могут устанавливаться RIMM различной емкости (сейчас они выпускаются на 64, 96, 128 и 256 Мбайт). Однако пока что фирме Intel не удалось достичь устойчивой работы канала с тремя модулями и пришлось ограничиться двумя. Теперь в памяти появился новый элемент-пустышка Continuity module . Это как бы модуль RIMM, но без микросхем памяти, и нужен он для того, чтобы замыкать цепь канала Rambus. Такая «заглушка» должна устанавливаться во все слоты канала, не занятые под модули RIMM. Если используются не все слоты, то память выгоднее ставить ближе к контроллеру — она будет работать быстрее (см. выше).

7.1.4. Память с виртуальными каналами — VC DRAM

Идея архитектуры памяти с виртуальными каналами (VirtualChannel Memory Architecture, не путать с виртуальной памятью!) заключается в помещении между массивом запоминающих ячеек и внешним интерфейсом микросхемы памяти набора канальных буферов . При этом операции обмена данными разделяются на два процесса: «фасадный» обмен данными с каналами и «тыловой» обмен между каналами и массивом запоминающих ячеек. Оба процесса выполняются по командам со стороны внешнего интерфейса почти независимо друг от друга. Архитектура виртуальных каналов приложима к памяти любого типа, включая ПЗУ и флэш-память, но наиболее интересна она в приложении к динамической памяти — VC DRAM.

Устройство VC DRAM рассмотрим на примере микросхем емкостью 128 Мбит, на которых строятся выпускаемые модули DIMM VC DRAM. По интерфейсу (составу и уровням сигналов) микросхемы и модули VC DRAM аналогичны обычным микросхемам SDRAM, но отличаются системой команд. Микросхемы имеют такую же внешнюю организацию по 4,8 или 16 бит данных, но совершенно иную внутреннюю архитектуру. Они имеют две матрицы (два банка) запоминающих ячеек размером 8 К×8 К, то есть каждая строка имеет объем 8 Кбит и состоит из четырех сегментов размером по 2 Кбит. Между матрицами и внешним интерфейсом имеется 16 канальных буферов , каждый объемом 2 Кбит. За одно обращение к матрице выполняется параллельная передача 2 Кбит данных между одним из буферов и сегментом выбранной строки. Это «тыловой» обмен реализуют команды PRF(Prefetch — чтение массива в буфер) и RST(Restore — сохранение буфера в массиве), в которых микросхеме указывается номер банка, номер сегмента и номер канала. Предварительно командой ACTдолжна быть активирована требуемая строка матрицы (при подаче этой команды задается банк и адрес строки). Деактивация строк (предварительный заряд) может быть автоматической, сразу после выполнения обращений к массиву (для этого имеются специальные команды предвыборки и сохранения — PRFAи RSTA) или же по специальным командам, деактивирующим выбранный банк или оба банка сразу.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Михаил Гук читать все книги автора по порядку

Михаил Гук - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Аппаратные интерфейсы ПК. Энциклопедия отзывы


Отзывы читателей о книге Аппаратные интерфейсы ПК. Энциклопедия, автор: Михаил Гук. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x