Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей
- Название:OrCAD PSpice. Анализ электрических цепей
- Автор:
- Жанр:
- Издательство:ДМК Пресс, Питер
- Год:2008
- Город:Москва, Санкт-Петербург
- ISBN:978-5-9706-0009-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей краткое содержание
Это руководство по работе в программе OrCAD Pspice предназначено для всех, кто знаком с основными разделами электротехники. При постепенном усложнении задач объясняются все необходимые аспекты работы в OrCAD Pspice, что позволяет творчески применять их при дальнейшем анализе электрических и электронных схем и устройств. Рассмотрение материала начинается с анализа цепей постоянного тока, продолжается анализом цепей переменного тока, затем переходит к различным разделам полупроводниковой электроники. Информация изложена таким образом, чтобы каждый, кто изучал или изучает определенный раздел электротехники, мог сразу же использовать OrCAD Pspice на практике. Больше внимания, чем в других книгах по этой теме, уделяется созданию собственных моделей и использованию встроенных моделей схем в OrCAD Pspice.
На прилагаемом к книге DVD вы найдете демонстрационную версию программы OrCAD PSpice Student Edition 9, которой можно пользоваться свободно. Кроме того, на диске размещена версия OrCAD 10.5 Demo Release, с которой можно работать в течение 30 дней после установки на компьютер.
OrCAD PSpice. Анализ электрических цепей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
.OP
.TF V([4]) V_Vs
.PROBE
*Netlist File:
.INC "hparmod-SCHEMATIС1.net"
*Alias File:
**** INCLUDING hparmod-SCHEMATIC1.net ****
* source HPARMOD
F_F 4 0 VF_F 50
VF_F 3 5 0V
E_E 5 0 4 0 2.5E-4
R_RL 4 0 10k
R_Ro 4 0 40k
R_Ri 2 3 1.1k
R_Rs 1 2 1k
V_Vs 1 0 1mV
**** RESUMING hparmod-SCHEMATIC1-hpamods.sim.cir
**** .INC "hparmod-SCHEMATIC1.als"
INCLUDING hparmod-SCHEMATIC1.als ****
.ALIASES
F_F F(3=4 4=0 )
VF_F F(1=3 2=5 )
E_E E(3=5 4=0 1=4 2=0 )
R_RL RL(1=4 2=0 )
R_Ro Ro(1=4 2=0 )
R_Ri Ri(1=2 2=3 )
R_Rs Rs(1=1 2=2 )
V_Vs Vs(+=l -=0 )
_ _(1=1)
_ _(2=2)
_ _(3=3)
_ _(4=4)
_ _(5=5)
.ENDALIASES
**** RESUMING hparmod-SCHEMATIC1-hparmods.sim.cir ****
.END
**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG С
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( 1) .0010 ( 2) 500.0Е-06 ( 3) -50.00E-06 ( 4) -.2000
( 5) -50.00E-06
VOLTAGE SOURCE CURRENTS
NAME CURRENT
VF_F 5.000E-07
V_Vs -5.000E-07
TOTAL POWER DISSIPATION 5.00E-10 WATTS
**** VOLTAGE-CONTROLLED VOLTAGE SOURCES
NAME E_E
V-SOURCE -5.000E-05
I-SOURCE 5.000E-07
**** CURRENT-CONTROLLED CURRENT SOURCES
NAME F_F
I-SOURCE 2.500E-05
**** SMALL-SIGNAL CHARACTERISTICS
V(4)/V_Vs = -2.000E+02
INPUT RESISTANCE AT V_Vs = 2.000E+03
OUTPUT RESISTANCE AT V(4) = 8.400E+03
Рис. 15.21. Выходной файл для модели в h -параметрах
Упражнение по созданию графической схемы было, однако, поучительно, и анализ заслуживает внимания, по крайней мере, с этой точки зрения. Обратите внимание на строку файла псевдонимов для зависимого источника E_E:
E_E 5 0 4 0 2.5Е- 4
Первые два полюса (5, 0) — выходные полюсы, показывают расположение зависимого источника в схеме, в то время как входные полюсы (4, 0) указывают на управляющее напряжение (от которого зависит E) снимаемое с R 0. Зависимый источник F_F описан как
F_F 4 0 VF_F 50
Первые два полюса (4, 0) являются выходными полюсами, показывающими, где вводится в схему ток F. Входные полюсы включены в контур последовательно с компонентами, через которые проходит независимый ток (управляющий источником F ). В команде F_F эта управляющая цепь показана именем источника напряжения в контуре. Контур, через который проходит ток I b , включает также и напряжение Е, что ясно видно из схемы.
В перечне элементов (netlist) имеется команда ввода
VF_F 3 5 0V
Эта строка была сформирована программой, чтобы ввести в листинг источник И), который был необходим в схеме на рис. 3.7 вместе с листингом F, который использовался в PSpice.
Не забудьте, что наши результаты можно при желании представить в действующих значениях для переменных составляющих, и обратите внимание на следующее: ток через источник напряжения VF_F равен 5.000Е-07 А. Это ток базы. С помощью других известных значений это легко проверить:

Источники напряжения, управляемые напряжением, обозначенные на рис. 15.21 как V-SOURCE , задают напряжение на узле 3, равное -50 мкВ, а компонент I-SOURCE создает ток в выходном контуре F. Поскольку коэффициент усиления источника F равен 50, ток F= 50 I b =25 мА. После деления между двумя сопротивлениями ток через RL равен (0,8·25)мкА=20 мкА. На рисунке этот ток направлен вверх, что нужно показать также и на вашей схеме. Напряжение на узле 4 равно (-20 мкА)(10 кОм)=0,2 В, что подтверждает значение, приведенное в выходном файле. Это отрицательное выходное напряжение, инвертированное относительно напряжения V s .
Характеристики полевых транзисторов
Демонстрационная версия OrCAD имеет компоненты J2N3819 и J2N4393 в качестве моделей для полевых n-канальных транзисторов (JFET). Чтобы получить семейство выходных характеристик, создайте новый проект с именем Jfetch. Используем простую схему (рис. 15.22). Номинальные значения для V GS и V DD показаны на рисунке. Определите опции моделирования в Simulation Profile, используя имя jfetchs. Внутренний цикл вариации использует значения источника напряжения V DD от 0 до 12 В с шагом в 0,2 В. Внешний цикл определяется изменением напряжения V GS от 0 до 4 В с шагом в 1 В.

Рис. 15.22. Схема смещения для n-канального полевого транзистора
Выполните моделирование и получите в Probe график ID(J1). Вы должны получить семейство кривых с параметром VGS, приведенных на рис. 15.23. Кривые показывают, что наибольшие токи соответствуют V GS =0. Ниже расположена кривая с параметром V GS =–1 В и так далее. Напряжением отсечки является V GS=– 3 В.

Рис. 15.23. Ток стока в n -канальном полевом транзисторе
Выходной файл включает параметры модели J2N3S19 : пороговое напряжение (отсечки) VTO=- 3 В, коэффициент передачи BETA и другие. Они отражены на рис. 15.24. В приложении D приведены все параметры модели для J (JFET).
**** 10/03/99 11:45:33 *********** Evaluation PSpice (Nov 1998) **************
** circuit file for profile: jfetchs
*Libraries:
* Local Libraries :
* From [PSPICE NETLIST] section of pspiceev.ini file:
.lib nom.lib
*Analysis directives:
.DC LIN V VDD 0V 12V 0.2V
+ LIN V_VGS 0V 4V 1V
.PROBE
*Netlist File:
.INC "jfetch-SCHEMATIC1.net"
*Alias File:
**** INCLUDING jfetch-SCHEMATIC1.net ****
* source JFETCH
J_J1 2 1 0 J2N3819
V_VDD 2 0 12V
V_VGS 0 1 1V
**** RESUMING jfetch-SCHEMATIC1-jfetchs.sim.cir
**** .INC "jfetch-SCHEMATIC1.als"
**** INCLUDING jfetch-SCHEMATIC1.als ****
.ALIASES
J_J1 J1(d=2 g=1 s=0 )
V_VDD VDD(+=2 -=0 )
V_VGS VGS(+=0 -=1 )
_ _(1=1)
_ _(2=2)
.ENDALIASES
.END
**** Junction FET MODEL PARAMETERS
J2N3819
NJF
VTO -3
BETA 1.304000E-03
LAMBDA 2.250000E-03
IS 33.570000E-15
ISR 322.400000E-15
ALPHA 311.700000E-06
VK 243.6
RD 1
RS 1
CGD 1.600000E-12
CGS 2.414000E-12
M .3622
VTOTC -2.500000E-03
BETATCE -.5
KF 9.882000E-18
Рис. 15.24. Выходной файл для n -канального полевого транзистора
Хотя предыдущие выпуски программного обеспечения от MicroSim использовали для создания рисунков программу Schematics вместо Capture, автоматически формируя команду .ОР в схемном файле, используемая в книге версия Capture этого не делает. Следовательно, значения параметров смещения не выводятся в выходном файле. Чтобы получить эти значения, отредактируете параметры настройки моделирования и запросите анализ параметров смещения путем проверки с опцией .OP. Выходной файл при таком запуске показан на рис. 15.25. Информация, дублирующая информацию предыдущего выходного файла, из него удалена. Убедитесь, что выходной файл соответствует графику, показывая V DD= 12 В, V GS =–1 В, I DD =5,328 мА.
Читать дальшеИнтервал:
Закладка: