Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей
- Название:OrCAD PSpice. Анализ электрических цепей
- Автор:
- Жанр:
- Издательство:ДМК Пресс, Питер
- Год:2008
- Город:Москва, Санкт-Петербург
- ISBN:978-5-9706-0009-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей краткое содержание
Это руководство по работе в программе OrCAD Pspice предназначено для всех, кто знаком с основными разделами электротехники. При постепенном усложнении задач объясняются все необходимые аспекты работы в OrCAD Pspice, что позволяет творчески применять их при дальнейшем анализе электрических и электронных схем и устройств. Рассмотрение материала начинается с анализа цепей постоянного тока, продолжается анализом цепей переменного тока, затем переходит к различным разделам полупроводниковой электроники. Информация изложена таким образом, чтобы каждый, кто изучал или изучает определенный раздел электротехники, мог сразу же использовать OrCAD Pspice на практике. Больше внимания, чем в других книгах по этой теме, уделяется созданию собственных моделей и использованию встроенных моделей схем в OrCAD Pspice.
На прилагаемом к книге DVD вы найдете демонстрационную версию программы OrCAD PSpice Student Edition 9, которой можно пользоваться свободно. Кроме того, на диске размещена версия OrCAD 10.5 Demo Release, с которой можно работать в течение 30 дней после установки на компьютер.
OrCAD PSpice. Анализ электрических цепей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Выходные характеристики Q2N3904
Для получения выходных характеристик вернемся к схеме на рис. 10.1. Создайте новый проект в Capture с именем bjtchar . Введем компонент IDC , затем R (для RB ), затем снова R (для RC ), затем VDC и 0 для «земли». Затем выберем транзистор типа Q2N3904 из библиотеки eval . Установим имена и значения компонентов, соответствующие рисунку, и соединим компоненты проводами. Пронумеруйте узлы, как на рис. 10.1 (с помощью Place, Netlist). Небольшое замечание касается условного направления тока через R С . Ниже приведена команда PSpice для ввода резистора R С .
RC 4 3 0.01
Порядок следования узлов (4, 3) означает, что ток резистора будет положителен, когда он направлен справа налево, то есть от узла 4 к узлу 3. Применим это соглашение к нашему анализу в Capture. Выберите R С и дважды поверните появившееся изображение, чтобы привести направление в соответствие с порядком следования узлов. Схема показана на рис. 15.1.

Рис. 15.1. Схема для биполярного транзистора, полученная в Capture
Для моделирования используйте имя Bjt1 и выберите тип анализа DC Sweep. Команда для анализа на PSpice:
.dc VCC 0 10V 0.05V IB 5uA 25uA 5uA
используется, чтобы выполнить вложенную вариацию. В Capture, для внутреннего цикла выбирается в качестве переменной напряжение источника VCC, которое линейно изменяется от 0 до 10 В с шагом 0,05 В, как показано на рис. 15.2. Переменной внешнего цикла является ток IB, изменяющийся от 5 до 25 мкА с шагом 5 мкА (рис. 15.3).

Рис. 15.2. Установки для моделирования биполярного транзистора

Рис. 15.3. Использование источника тока для внешнего цикла вариации параметров
Выполните моделирование и в Probe получите график I(R C) . При этом будет выведено необходимое семейство характеристик, с одной кривой для каждого приращения тока базы в 5 мкА. Результаты показаны на рис. 15.4.

Рис. 15.4. Выходные характеристики биполярного транзистора
Выходной файл, полученный в Capture, показан на рис. 15.5. Сравните его с соответствующим выходным файлом, приведенным в главе 10. Отметим две команды, приведенные под заголовком Analysis directives: и порядок следования узлов для строки, вводящей R C :
R RC 4 3 0.01
**** 09/27/99 14:13:33 *********** Evaluation PSpice (Nov 1998) **********
** circuit file for profile: Bjt1
*Libraries:
* Local Libraries :
* From [PSPICE NETLIST] section of pspiceev.ini file:
.lib nom.lib
*Analysis directives:
.DC LIN V_VCC 0 10V 0.05V
+ LIN I_IB 5uA 25uA 5uA
.PROBE
*Netlist File:
.INC "bjtchar-SCHEMATIC1.net"
*Alias File:
**** INCLUDING bjtchar-SCHEMATIC1.net ****
* source BJTCHAR
V_VCC 4 0 10V
R_RC 4 3 0.01
R_RB 12 0.01
I_IB 0 1 DC 25uA
Q_Q1 3 2 0 Q2N3904
**** RESUMING bjtchar-SCHEMATIC1-Bjt1.sim.cir ****
.INC "bjtchar-SCHEMATIC1.als"
**** INCLUDING bjtchar-SCHEMATIC1.als ****
.ALIASES
V_VCC VCC(+=4 -=0 )
R_RC RC(1=4 2=3 )
R_RB RB(1=1 2=2 )
I_IB IB(+=0 -=1 )
Q_Q1 Q1(c=3 b=2 e=0 )
_ _(1=1)
_ _(2=2)
_ _(3=3)
_ _(4=4)
.ENDALIASES
**** BJT MODEL PARAMETERS
Q2N3904 NPN
IS 6.734000E-15 BF 416.4
Рис. 15.5. Выходной файл для биполярного транзистора
Такой порядок был определен, когда мы дважды повернули RC из первоначальной позиции. Транзистор введен строкой
Q_Q1 3 2 0 Q2N3904
Полюса 3, 2, 0 соответствуют коллектору, базе и эмиттеру.
Входные характеристики Q2N3904
Используем схему, показанную на рис. 10.3, чтобы получить входные характеристики транзистора Q2N3904. После создания нового проекта bjtichar разместим компоненты обычным способом. Резистор R S необходимо трижды повернуть, резистор R L вращать не нужно. Пронумеруйте узлы, как показано на рис. 15.6, и сохраните проект. Для моделирования используйте вариацию dc sweep с именем Bjti1 с внутренним циклом вариации по току источника I ВВ в линейном диапазоне от 0 до 100 мкА и с шагом в 1 мкА. На рис. 15.7 показана вкладка для установки опций этой вариации. В качестве параметра внешнего цикла вариации выбирается напряжение источника V CC от 0 до 10 В с шагом в 2 В (рис. 15.8). Выполните моделирование и в Probe установите в качестве переменной по оси X напряжение на узле 1 (напряжение на базе) V(Rs:I). График I(BB) отображает ток базы. Все кривые этого семейства, кроме первой (при V CE =0), сливаются в одну (рис. 15.9). Выходной файл показан на рис. 15.10 для сравнения с предыдущим выходным файлом.

Рис. 15.6. Цепи смещения для биполярного транзистора

Рис. 15.7. Установка опций при снятии входных характеристик

Рис. 15.8. Установка опций для внешнего цикла вариации

Рис. 15.9. Входные характеристики биполярного транзистора
**** 09/27/99 14:13:33 *********** Evaluation PSpice (Nov 1998) **************
** circuit file for profile: Bjt1
*Libraries:
* Local Libraries :
* From [PSPICE NETLIST] section of pspiceev.ini file:
.lib nom.lib
*Analysis directives:
.DC LIN V VCC 0 10V 0.05V
+ LIN I_IB 5uA 25uA 5uA
.PROBE
*Netlist File:
.INC "bjtchar-SCHEMATIC1.net" *Alias File:
**** INCLUDING bjtchar-SCHEMATIC1.net ****
* source BJTCHAR
V_VCC 4 0 10V
R_RC 4 3 0.01
R_RB 1 2 0.01
I_IB 0 1 DC 25uA
Q_Q1 3 2 0 Q2N3904
**** INCLUDING bjtchar-SCHEMATIC1.als ****
.ALIASES
V VCC VCC(+=4 -=0 )
R_RC RC(1=4 2=3 )
R_RB RB(1=1 2=2 )
I_IB IB(+=0 -=1 )
Q_Q1 Q1(c=3 b=2 e=0 )
_ _(1=1)
_ _(2=2)
_ _(4=4)
_ _(3=3)
.ENDALIASES
.END
**** BJT MODEL PARAMETERS
Q2N3904
NPN
IS 6.734000E-15
BF 416.4
Рис. 15.10. Выходной файл для выходных характеристик биполярного транзистора
Изучение схем с общим эмиттером на биполярных транзисторах
Для изучения цепей смещения в главе 10 была использована схема на рис. 10.7. Соберите эту схему в Capture, создав новый проект Bjtcase. Напомним, что необходимо трижды повернуть резисторы, чтобы первый полюс каждого резистора оказался наверху. Значения будут такими же, как на рис. 10.7: R 1=40 кОм, R 2=3,3 кОм, R c =4,7 кОм, R E =220 кОм и V CC= 12 В. Транзистор 2N2222 обозначен в библиотеке eval как Q2N2222 . Пронумеруйте узлы, как на рис. 10.7, затем сохраните полученный рисунок (рис. 15.11). Чтобы получить анализ цепей смещения, используйте моделирование на PSpice под именем Bjtcase. Выберите тип анализа Bias Point и для Output File Option установите опцию "Include detailed bias point information (.OP)". Выполните моделирование, проверьте ошибки, исследуйте выходной файл, затем отредактируйте его в Word и распечатайте. Сравните ваши результаты с показанными на рис. 15.12. Значения параметров смещения должны совпадать с приведенными в главе 10.
Читать дальшеИнтервал:
Закладка: