Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей
- Название:OrCAD PSpice. Анализ электрических цепей
- Автор:
- Жанр:
- Издательство:ДМК Пресс, Питер
- Год:2008
- Город:Москва, Санкт-Петербург
- ISBN:978-5-9706-0009-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей краткое содержание
Это руководство по работе в программе OrCAD Pspice предназначено для всех, кто знаком с основными разделами электротехники. При постепенном усложнении задач объясняются все необходимые аспекты работы в OrCAD Pspice, что позволяет творчески применять их при дальнейшем анализе электрических и электронных схем и устройств. Рассмотрение материала начинается с анализа цепей постоянного тока, продолжается анализом цепей переменного тока, затем переходит к различным разделам полупроводниковой электроники. Информация изложена таким образом, чтобы каждый, кто изучал или изучает определенный раздел электротехники, мог сразу же использовать OrCAD Pspice на практике. Больше внимания, чем в других книгах по этой теме, уделяется созданию собственных моделей и использованию встроенных моделей схем в OrCAD Pspice.
На прилагаемом к книге DVD вы найдете демонстрационную версию программы OrCAD PSpice Student Edition 9, которой можно пользоваться свободно. Кроме того, на диске размещена версия OrCAD 10.5 Demo Release, с которой можно работать в течение 30 дней после установки на компьютер.
OrCAD PSpice. Анализ электрических цепей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рис. 14.27. Схема и перечень компонентов, полученных в Capture
Два примера в начале этой главы познакомили нас с методами создания схемы в Capture и с автоматическим созданием программой схемного файла, с помощью которого выполняется моделирование. Очевидно, что процесс гораздо более утомителен и требует большего времени, чем просто использование команд PSpice в схемном файле для тех же целей. Это справедливо для всех задач и в этом целесообразность изучения программы PSpice до овладения созданием схем в Capture.
Полное сопротивление нагрузки, обеспечивающее максимальную передаваемую мощность
На рис. 2.9 главы 2 показан последовательный контур, предназначенный для определения полного сопротивления нагрузки, при котором в ней обеспечивается максимальная мощность. Используем Capture, чтобы создать новый проект maxpo для схемы, показанной на рис. 14.28. Параметры элементов: V 1=12 В (используем источник VAC ), R 1 = 600 Ом, R 2=600 Ом, L 1=23,873 мГн и С 1=1,06 мкФ. Трижды поверните R 2и C 1так, чтобы ваш рисунок был похож на приведенный в этом примере. Пронумеруйте узлы, двигаясь по часовой стрелке от V 1, используя Place, Netlist. Для моделирования на PSpice выберите имя Maxsweep и в качестве типа анализа выберите AC Sweep/Noise. Вариация должна быть проведена для частотного диапазона от f =500 Гц до f =1500 Гц с использованием 1001 точки.

Рис. 14.28. Схема для определения максимальной мощности
Выполните моделирование и получите в Probe график I(R1) при линейной вариации частоты. Сравните ваши результаты с представленными на рис. 14.29. Обратите внимание, что при резонансной частоте f =1 кГц ток имеет максимальное значение 10 мА. Удалите этот график и получите график p(V(3)) для фазового угла напряжения на нагрузке (то есть на последовательном соединении R 2и C 1). Убедитесь, что этот угол на резонансной частоте равен -14,04°, как показано на рис. 14.30.

Рис. 14.29. К определению максимальной мощности

Рис. 14.30. Фазовый угол напряжения на нагрузке
В качестве дополнительного упражнения удалите этот график и получите графики V(R1:1), V(L1:1), V(LI:2) и V(C1:1). Используйте курсор, чтобы найти значение каждого из этих напряжений при f =1 кГц. Сравните ваши результаты с показанными на рис. 14.31. Можете ли вы показать каждое из этих напряжений на схеме?

Рис. 14.31. Амплитуды напряжений при максимальной мощности
Обозначения токов и напряжений в Probe
Перед тем как выйти из Probe, поэкспериментируйте с другими временными диаграммами напряжения и тока. Обозначив через x некоторый компонент, найдите напряжения на различных компонентах, используя V(x:1) для напряжения в точке х:1 относительно земли, r(v(x:1)) — для действительной и img(V(x:1)) — для мнимой части этого напряжения. Используйте I(х), чтобы найти график тока, текущего от первого узла ко второму в компоненте x, r (I(x)) — для действительной и img(I(x)) — для мнимой части этого тока.
Последовательный резонанс
В предыдущем примере значения L и C были выбраны такими, чтобы обеспечить резонанс на частоте f =1 кГц. Во многих схемах резонансная частота неизвестна, и ее необходимо определить при анализе схемы. Создайте в Capture схему, подобную приведенной на рис. 2.10. Схема для проведения этого анализа показана на рис. 14.32. Параметры элементов: V 1=1 В (используется источник типа VAC ), R 1=50 Ом, L 1=20 мГн, и С 1 = 150 нФ. Необходимо найти резонансную частоту. Откройте новый проект с именем resonant, создайте схему и разметьте узлы в соответствии с рисунком. Для моделирования выберем имя Ssweep и зададим тип анализа AC Sweep/Noise в диапазоне частот от 100 Гц до 5 кГц. Используйте 4901 точку, получив результат для каждого целочисленного значения частоты.

Рис. 14.32. Последовательный резонансный контур
В Probe получите график I(R1), затем напряжение на конденсаторе V(C1:1) с отдельной осью Y. Сравните ваши результаты с приведенными в главе 2 и на рис. 14.33.

Рис. 14.33. АЧХ тока и напряжения на конденсаторе при резонансе
Удалите эти графики и вторую ось Y и получите следующие графики:
1) v(v(3)) , действительную составляющую напряжения на узле 3 (между L 1и C 1); это напряжение становится нулевым при f 0.
2) img(v(3)) , мнимую составляющую этого же напряжения, которая достигает отрицательного минимума в -7,238 В при f 0.
3) img(v(2)) , мнимую часть напряжения на последовательном соединении L 1и С 1; это напряжение равно нулю при f 0.
Эти графики приведены на рис. 14.34.

Рис. 14.34. Напряжение на конденсаторе и на LC-цепи при резонансной частоте
Цепи переменного тока с несколькими источниками
Проанализируем теперь с помощью Capture цепи с несколькими источниками переменного напряжения из главы 2. Создайте в Capture схему, показанную на рис. 14.35, с именем multisrc . Используйте VAC для каждого источника напряжения и установите V 1=200∠0° В, V 2=10∠-90° В (обратите внимание, что V 2имеет «+» у нижнего полюса) и V 3=40∠0° В. Значения R, L и С показаны на рисунке. Разметьте узлы, как показано на рис. 2.27 (выбрав Place, Netlist). После создания схемы дайте моделированию имя Multi и выполните анализ AC Sweep/Noise в диапазоне частот от 58 до 62 Гц для 101 точки. Вспомните, что мы не можем использовать курсор, если анализ выполнен для одной частоты 60 Гц, как в главе 2.

Рис. 14.35. Схема с несколькими источниками питания
Проведите моделирование и получите графики I(C), IR(C) и II(C). Для оси X используйте линейный масштаб от 58 до 62 Гц. Теперь добавьте другую ось Y и получите IР(С). Эти графики показаны на рис. 14.36. При желании получите другие численные результаты, показанные на рис. 2.28. Для этого удалите графики, заменив их такими графиками, как I(L), IR(L), II(L) и IP(L). Разумеется, для этого вам потребуется достаточно много времени, и простота использования непосредственно PSpice вместо Capture станет особенно очевидной.
Читать дальшеИнтервал:
Закладка: