Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей
- Название:OrCAD PSpice. Анализ электрических цепей
- Автор:
- Жанр:
- Издательство:ДМК Пресс, Питер
- Год:2008
- Город:Москва, Санкт-Петербург
- ISBN:978-5-9706-0009-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей краткое содержание
Это руководство по работе в программе OrCAD Pspice предназначено для всех, кто знаком с основными разделами электротехники. При постепенном усложнении задач объясняются все необходимые аспекты работы в OrCAD Pspice, что позволяет творчески применять их при дальнейшем анализе электрических и электронных схем и устройств. Рассмотрение материала начинается с анализа цепей постоянного тока, продолжается анализом цепей переменного тока, затем переходит к различным разделам полупроводниковой электроники. Информация изложена таким образом, чтобы каждый, кто изучал или изучает определенный раздел электротехники, мог сразу же использовать OrCAD Pspice на практике. Больше внимания, чем в других книгах по этой теме, уделяется созданию собственных моделей и использованию встроенных моделей схем в OrCAD Pspice.
На прилагаемом к книге DVD вы найдете демонстрационную версию программы OrCAD PSpice Student Edition 9, которой можно пользоваться свободно. Кроме того, на диске размещена версия OrCAD 10.5 Demo Release, с которой можно работать в течение 30 дней после установки на компьютер.
OrCAD PSpice. Анализ электрических цепей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Сравните результаты этого анализа с результатами для базового усилителя ОЭ (без шунтирующего резистора). Обратите внимание, что включение резистора вызывает увеличение входного и выходного сопротивлений. На рис. 3.16 приведен выходной файл.
Common-Emitter Circuit with Bridging Resistor **** CIRCUIT DESCRIPTION
VS 1 0 1mV
VO 3 2A 0
E 3A 0 4 0 2.5Е-4
F 4 0 V0 50
RS 1 2 10k
RI 2 3 1.1k
RO 4 0 40k
RL 4 0 10k
R1 2 4 200k
.OP
.OPT nopage
.TF V(4) VS
.END
NODE VOLTAGE 1(1) .0010 ( ( 3A1-3.175E-06
L VOLTAGE 2) 33.15E-06
NODE VOLTAGE ( 3) -3.175E-06
NODE VOLTAGE ( 4) -.0127
VOLTAGE SOURCE CURRENTS NAME CURRENT
VS
VO
-9.669E-( 3.302E-(
TOTAL POWER DISSIPATION 9.67E-11 WATTS
**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG С
**** VOLTAGE-CONTROLLED VOLTAGE SOURCES
NAME E
V-SOURCE -3.175E-06
I-SOURCE 3.302E-08
**** CURRENT-CONTROLLED CURRENT SOURCES
NAME I-SOURCE 1.651E-06
**** SMALL-SIGNAL CHARACTERISTICS
V(4)/VS = -1.270E+01
INPUT RESISTANCE AT VS = 1.034E+04
OUTPUT RESISTANCE AT V(4) = 2.534E+03
Рис. 3.16. Результаты анализа схемы на рис. 3.15
Дуальная теорема Миллера
Схемы другой конфигурации часто анализируются с использованием дуальной теоремы Миллера. На рис. 3.17 эмиттерный резистор R е заменен двумя другими резисторами (один последовательно с базой, другой последовательно с коллектором). Если вы знакомы с этой методикой, используйте ее для решения этого примера, чтобы оценить ее преимущества. Затем сравните результаты с полученными при использовании PSpice.

Рис. 3.17. Усилитель ОЭ с резистором эмиттера
При анализе на PSpice вы не должны заменять R e . Схема, использующая модель в h -параметрах, показана на рис. 3.18. Входной файл имеет следующий вид:
Common-Emitter Amplifier with Emitter Resistor
VS 1 0 1mV
V0 3 3A 0
E 3A 4 5 4 2.5E-4
F 5 4 V0 50
RS 1 2 1k
RI 2 3 1.1k
RO 5 4 4 0k
RL 5 0 10k
RE 4 0 330
.OP
.OPT nopage
.TF V(5) VS
.END

Рис. 3.18. Модель усилителя ОЭ с резистором в цепи эмиттера для анализа на PSpice
Выполните анализ, получите распечатку выходного файла и убедитесь, что полный коэффициент усиления по напряжению: A V =V(5)/VS=-25,74; R' i =15,44 кОм и R ' 0=9,752 кОм. Вычислите и проверьте также параметры: A V (со стороны базы)=27,5; A I = I L/I b =39,7; R i =14,44 кОм (со стороны базы) и R 0=393 кОм (без учета R L ).
При этом анализе особый интерес представляет влияние R e на R i и R 0: R i находится путем умножения на коэффициент (1+ h fe ) R e . Коэффициент усиления по напряжению обычно приблизительно соответствует выражению RL/RE. Выясните, насколько точно это для данного примера. На рис. 3.19 показан выходной файл.
Common-Emitter Amplifier with Emitter Resistor
**** CIRCUIT DESCRIPTION
VS 1 0 1mV
V0 3 3A 0
E 3A 4 5 4 2.5E-4
F 5 4 V0 50
RS 1 2 1k
RI 2 3 1.1k
RO 5 4 40k
RL5 0 10k
RE 4 0 330
.OP
.OPT nopage
. TF V(5) VS
.END
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( 1) 0.010 ( 2) 935.2E-06 ( 3) 864.0E-06 ( 4) 670.6E-06
( 5) -.0257 ( 3A) 864.0E-06
VOLTAGE SOURCE CURRENTS
NAME CURRENT
VS -6.477E-08
V0 6.477E-08
TOTAL POWER DISSIPATION 6.48E-11 WATTS
**** VOLTAGE-CONTROLLED VOLTAGE SOURCES
NAME E
V-SOURCE -6.651E-06
I-SOURCE 6.477E-08
CURRENT-CONTROLLED CURRENT SOURCES
NAME
I-SOURCE 3.239E-06
**** SMALL-SIGNAL CHARACTERISTICS
V(5)/VS = -2.574E+01
INPUT RESISTANCE AT VS = 1.544E+04
OUTPUT RESISTANCE AT V(5) = 3.752Е+03
Рис. 3.19. Выходной файл с результатами анализа схемы на рис. 3.18
Схема с общим коллектором, включающая коллекторный резистор
Другая схема, представляющая интерес, является разновидностью обычной схемы с ОК. Она содержит внешний коллекторный резистор, добавленный для защиты транзистора от короткого замыкания резистора в цепи эмиттера. Этот вариант схемы приведен на рис. 3.20, а модель PSpice показана на рис. 3.21. Если вы хотите анализировать эту схему вручную, присутствие RC представляет проблему, которая могла бы потребовать применения дуальной теоремы Миллера.

Рис. 3.20. Схема усилителя ОК с резистором в цепи коллектора

Рис. 3.21. Модель усилителя OK с резистором в цепи коллектора для анализа на PSpice
Обращение к формулам утомительно и не слишком способствует пониманию работы схемы. Рассмотрите входной файл, затем сравните результаты выходного файла с полученными для усилителя без R C.
Common-Collector Circuit with Collector Resistor
VS 1 0 1mV
V0 3 3A 0
E 3A 4 5 4 1
P 5 4 V0 -51
RS 1 2 1k
RI 2 3 1.1k
RC 4 0 1k
RO 5 4 40k
RL 5 0 10k .OP
.OPT nopage
.TF V(5) VS
.END
Выполните анализ и сравните результаты с теми, что получены для простого усилителя ОК. Вы увидите, что коэффициент усиления по напряжению почти идентичен в обоих случаях и что входное и выходное сопротивления изменяются также немного. Мы установили, что введение R C в схему почти не влияет на ее работу.
Усилители с высоким входным сопротивлением
Если вам необходим усилитель с высоким входным сопротивлением, можно применить схему Дарлингтона (рис. 3.22). Эта схема состоит из двух транзисторов с объединенными коллекторами, размещаемых часто в одном корпусе. Можно считать, что в цепь эмиттера первого каскада включен бесконечно большой внешний резистор R e1 =∞. Использование модели с h -параметрами для каскадов ОК приводит к модели, показанной на рис. 3.23, которой соответствует входной файл:
Darlington-Pair (High-Input-Resistance) Amplifier
VS 1 0 1mV
V01 3 3A 0
V02 5 5A 0
E1 3A 0 4 0 1
Е2 5А 0 6 0 1
F1 4 0 V01 -51
F2 6 0 V02 -51
RS 1 2 1k
RI1 2 3 1.1k
RO1 4 0 40k
RI2 4 5 1.1k
RO2 6 0 40k
RL 6 0 4k
.OP
.OPT nopage
.IF V(6) VS
.END

Рис. 3.22. Применение схемы Дарлингтона для получения высокого входного сопротивления

Рис. 3.23. Модель с h -параметрами для схемы Дарлингтона
Читать дальшеИнтервал:
Закладка: