Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE

Тут можно читать онлайн Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE - бесплатно полную версию книги (целиком) без сокращений. Жанр: Программы, издательство ДМК Пресс, год 2008. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Визуальное моделирование электронных схем в PSPICE
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2008
  • Город:
    Москва
  • ISBN:
    978-5-94074-436-8
  • Рейтинг:
    3.7/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE краткое содержание

Визуальное моделирование электронных схем в PSPICE - описание и краткое содержание, автор Роберт Хайнеманн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

PSPICE определяет промышленный стандарт программ-имитаторов и является самым популярным пакетом моделирования для OS/Windows как у профессионалов, так и у любителей по всему миру. Эта книга — лучшее на сегодняшний день учебное пособие по PSPICE. Курс построен по принципу «от простого к сложному». Первая часть посвящена основам работы с программой. В ней говорится о том, как строить и редактировать чертежи электронных схем, находить нужную информацию в выходном файле, моделировать цепи постоянного и переменного тока, строить диаграммы любой сложности, исследовать частотные характеристики схем. Во второй части подробно рассказывается о различных видах анализов, выполняемых с помощью PSPICE (анализ переходных процессов, параметрический анализ и т.д.). Также в ней содержится руководство по цифровому моделированию и использованию программы-осциллографа PROBE. Третья и четвертая части включают сведения об использовании PSPICE для расчета электрических цепей и цепей регулирования. Описывается, как создать и модифицировать модели компонентов схем.

Книга адресована пользователям различного уровня подготовки: в первую очередь инженерам и конструкторам, профессиональным разработчикам промышленных изделий (электронных схем, технологического оборудования, автомобилей и т.д.), студентам радиотехнических специальностей, а также радиолюбителям.

Прилагаемый к книге компакт-диск содержит рабочие версии программы PSPICE, подробный справочник по PSPICE (на английском языке), библиотеки компонентов, необходимые для работы с книгой, и учебные упражнения.

Визуальное моделирование электронных схем в PSPICE - читать онлайн бесплатно полную версию (весь текст целиком)

Визуальное моделирование электронных схем в PSPICE - читать книгу онлайн бесплатно, автор Роберт Хайнеманн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

После того как PSPICE завершит вычисления, откроется окно Available Sections, в котором можно выбирать для отображения на экране PROBE результаты интересующих вас прогонов анализа Монте-Карло. В данном случае вам требуются все имеющиеся данные, поэтому просто щелкните по кнопке OK.

Шаг 24А теперь выведите на экран диаграмму частотной характеристики выходного напряжения полосового фильтра для всех десяти прогонов анализа Монте-Карло (рис. 9.39).

Рис 939 Поведение схемы BPAKTsch в ходе анализа МонтеКарло Результат не - фото 282

Рис. 9.39. Поведение схемы BP_AKT.sch в ходе анализа Монте-Карло

Результат не то чтобы грандиозный, но, кажется, фильтр все же рабочий. Конечно, 1% и 2% очень низкие для допусков значения, и дальнейшее уменьшение возможно, только если точно подгонять резисторы и «вручную» выбирать конденсаторы.

Наряду с анализом Монте-Карло в программе PROBE можно выполнить стохастический эквивалент анализа производительности: на экране будет показано статистическое распределение величин, которые извлекаются из каждого отдельного прогона анализа Монте-Карло с помощью целевых функций. В качестве примера изобразим в виде гистограммы статистическое распределение ширины полосы на уровне 3-dB десяти полученных выше кривых.

Шаг 25Чтобы создать гистограмму статистического распределения ширин полос частот на уровне 3-dB, действуйте следующим образом:

1. Удалите с экрана PROBE все диаграммы.

2. Активизируйте опцию Performance Analysis, щелкнув на панели инструментов PROBE по кнопке картинка 283.

3. Откройте окно Add Traces, отправьте в строку Trace Expressionфункцию Bandwith(1, db_level) и в скобках введите Bandwith (V(R7:1.3). Щелкните по кнопке OK, и на вашем экране будет создана гистограмма, структура которой аналогична изображенной на рис. 9.40 (с вашими статистическими данными диаграмма будет выглядеть иначе).

Рис 940 Гистограмма статистического распределения полос частот на уровне - фото 284

Рис. 9.40. Гистограмма статистического распределения полос частот на уровне 3-dB

Разумеется, нельзя ожидать подробной статистики после всего десяти прогонов анализа Монте-Карло, однако вам не возбраняется увеличить их количество до 399, чтобы создать более совершенную гистограмму. Чем больше прогонов вы потребуете сделать в ходе анализа Монте-Карло, тем тоньше будут столбцы и тем больше их будет отображено. Число столбцов вы можете установить, выбрав в меню PROBE Optionsстроку Number of Histogram Divisions(Количество столбцов гистограммы).

Теперь вкратце рассмотрим опции окна Monte Carlo or Worst Case(см. рис. 9.38), которыми вы еще не пользовались:

YMAX — определяет максимальную разницу между «номинальным прогоном» и отдельными прогонами (MC Runs). Результаты можно получить только в выходном файле;

MAX — определяет максимальное значение (относительный максимум) отдельных прогонов MC Runs, а также отклонение отдельных максимальных значений от максимального значения «номинального прогона». Результаты можно получить только в выходном файле;

MIN — функция, аналогичная опции MIN. Результаты можно получить только в выходном файле;

RISE — определяет первое превышение границы (при нарастании фронта), заданной в поле ввода Rise/Fall(Нарастание/Спад). Результаты можно получить только в выходном файле;

FALL — действует аналогично RISE, но только при спаде фронта. Результаты можно получить только в выходном файле;

LIST — записывает параметры всех прогонов MC Runs в выходной файл;

SEED — стартовая позиция (начальное число) генератора случайных чисел. 1≤SEED≤32767. Если вы ничего не вводите в поле SEED(Начальное число), то по умолчанию устанавливается начальное число 1753. Одинаковые значения в этом поле при одинаковых анализах всегда дают одинаковые «случайные» числа. Поэтому, если вы хотите использовать новый набор значений параметров, предварительно измените значение в поле SEED;

ALL — выявляет все данные;

FIRST — предоставляет только результаты первых прогонов MC Runs и ровно стольких, сколько вы запросили в поле Value;

EVERY — предоставляет результаты каждого N-прогона MC Run. При этом N соответствует значению, которое вы ввели в поле Value;

RUN — предоставляет результаты только указанных в поле Valueпрогонов анализа Монте-Карло;

RANGE: (Lo/Hi) — диапазон изменяемой переменной, внутри которого следует осуществлять поиск YMAX, MAXи MIN.

Напоследок приведем небольшой пример того, как можно изменять параметры компонентов, если они не доступны через меню атрибутов (как было показано выше на примере резисторов и конденсаторов).

Исследуем схему с общим эмиттером, изображенную на рис. 9.10, для того случая, когда усиление тока транзистора рассеивается на ±50%.

Сначала надо маркировать транзистор (чтобы он окрасился в красный цвет), затем открыть меню Editи выбрать в нем строку Model…. Откроется окно Edit Model,где нужно щелкнуть по кнопке Edit Instance Model (Text)…(Редактировать модель образца…). Откроется редактор моделей с параметрами транзистора. Рядом с усилением тока Bf следует в качестве дополнения ввести допуск Dev=50% (рис. 9.41). Программа PSPICE автоматически присваивает этой модели новое имя (BC548B-X). Созданная модель действительна только в данной схеме (то есть локально). Она сохраняется в той же директории, что и чертеж и под тем же именем, но с расширением файла .lib. Новую модель можно присвоить и другим транзисторам той же схемы. Для этого нужно маркировать изменяемый компонент, затем открыть окно Edit Modelи щелкнуть в нем по кнопке Change Model Reference…(Изменить ориентировочное название модели…). В открывшемся окне вы можете ввести новое имя модели. Такой способ позволяет, например, присвоить модель BC548B-X транзистору BC548B.

Рис 941 Редактор моделей с моделью BC548B усиление тока Bf имеет разброс - фото 285

Рис. 9.41. Редактор моделей с моделью BC548B; усиление тока Bf имеет разброс ±50%

Анализ Монте-Карло с измененным транзистором показал удовлетворительные результаты (рис. 9.42). Разброс усиления тока, благодаря сильной отрицательной обратной связи, не оказывает заметного влияния на частотную характеристику схемы.

Рис 942 Выходное напряжение схемы с общим эмиттером после десяти прогонов - фото 286

Рис. 9.42. Выходное напряжение схемы с общим эмиттером после десяти прогонов анализа Монте-Карло

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роберт Хайнеманн читать все книги автора по порядку

Роберт Хайнеманн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Визуальное моделирование электронных схем в PSPICE отзывы


Отзывы читателей о книге Визуальное моделирование электронных схем в PSPICE, автор: Роберт Хайнеманн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x