Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE
- Название:Визуальное моделирование электронных схем в PSPICE
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2008
- Город:Москва
- ISBN:978-5-94074-436-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE краткое содержание
PSPICE определяет промышленный стандарт программ-имитаторов и является самым популярным пакетом моделирования для OS/Windows как у профессионалов, так и у любителей по всему миру. Эта книга — лучшее на сегодняшний день учебное пособие по PSPICE. Курс построен по принципу «от простого к сложному». Первая часть посвящена основам работы с программой. В ней говорится о том, как строить и редактировать чертежи электронных схем, находить нужную информацию в выходном файле, моделировать цепи постоянного и переменного тока, строить диаграммы любой сложности, исследовать частотные характеристики схем. Во второй части подробно рассказывается о различных видах анализов, выполняемых с помощью PSPICE (анализ переходных процессов, параметрический анализ и т.д.). Также в ней содержится руководство по цифровому моделированию и использованию программы-осциллографа PROBE. Третья и четвертая части включают сведения об использовании PSPICE для расчета электрических цепей и цепей регулирования. Описывается, как создать и модифицировать модели компонентов схем.
Книга адресована пользователям различного уровня подготовки: в первую очередь инженерам и конструкторам, профессиональным разработчикам промышленных изделий (электронных схем, технологического оборудования, автомобилей и т.д.), студентам радиотехнических специальностей, а также радиолюбителям.
Прилагаемый к книге компакт-диск содержит рабочие версии программы PSPICE, подробный справочник по PSPICE (на английском языке), библиотеки компонентов, необходимые для работы с книгой, и учебные упражнения.
Визуальное моделирование электронных схем в PSPICE - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Напряжение смещения на выходе упрощенной схемы легко регулируется, так как теперь потенциометр R potдолжен обеспечивать питанием всего лишь один единственный транзистор. Поэтому значение R было изменено на SET=0.35. Это соответствует разделению сопротивления потенциометра в соотношении R O/R U=650 Ом/350 Ом.
Для новой схемы понадобилось всего десять транзисторов и в общей сложности пятьдесят компонентов. Таким образом, эта схема остается в пределах допустимых границ демонстрационной версии. Итак, основная проблема, стоявшая перед вами при моделировании в демонстрационной версии, устранена.
Теперь остается только решить вопрос, как заполучить недостающие компоненты, то есть транзисторы и светоизлучающие диоды. Однако эту проблему вы решили еще при установке программы PSPICE на жесткий диск своего компьютера: перед тем как начать работу с книгой, вы, четко следуя инструкции по инсталляции, дополнительно установили файлы, содержащие недостающие компоненты. (Как вы помните, эти компоненты находятся в библиотеках схемных обозначений MISC.slb и библиотеке моделей SAMPLE.lib.) Затем, следуя руководству в начале третьей части, подключили эти файлы к программе PSPICE. Убедитесь, что теперь все необходимые компоненты можно найти в окнах просмотра компонентов.
В следующей главе мы проведем моделирование этой схемы. Для того чтобы вы могли проверить, насколько упрощенный вариант способен к воспроизведению рабочих характеристик оригинальной схемы, описанные в книге анализы были проведены с помощью полной версии программы PSPICE. Если у вас возникнет желание, вы можете дополнительно провести моделирование упрощенной схемы и убедиться в идентичности полученных результатов.
Глава 12
Моделирование и изменение схем
Эта глава посвящена анализу схемы МОП-транзисторного усилителя. Особое внимание уделено тому, насколько похожи результаты измерения и моделирования схемы и чем обусловлены различия.
В табл. 12.1 приведены наиболее важные результаты измерения МОП-транзисторного усилителя, изображенного на рис. 11.1.
Таблица 12.1. Результаты измерения МОП-транзисторного усилителя
Атрибут | Описание |
---|---|
Эффективная полоса пропускания (3 дБ) при 35 Вт/8 Ом | 1.5 Гц–125 кГц |
Скорость нарастания фронта с входным фильтром | 20 В/мкс |
Отношение сигнал/шум (при 1 Вт/8 Ом) | > 99 дБА |
Гармонические искажения (60 Вт/1 кГц/8 Ом) | < 0.005% |
В этой главе аналогичные данные будут получены путем моделирования, а затем сопоставлены с результатами измерения. [39] Результаты сопоставления данных измерения с данными, полученными при моделировании, вы найдете в табл. 12.2. При желании вы можете пока пропустить страницы с описанием сложных анализов, проведенных с помощью PSPICE, в ходе которых были получены данные для сравнения. Не опасайтесь, что это помешает вашей дальнейшей работе с книгой.
12.1. Эффективная полоса пропускания
Прежде всего, используя указанные в журнале Elektor значения, определим путем моделирования эффективную 3-dB-полосу пропускания при выходной мощности 35 Вт и сопротивлении нагрузки RH равном 8 Ом.
Возможно, некоторым незнакомо понятие 3-dB-полоса пропускания. Однако речь здесь идет не о чем ином, как о прекрасно известной любому электронщику «нормальной» полосе частот, на границах которой выходное напряжение падает до 70.7%. Разница состоит лишь в том, что 3-dB-падение напряжения соответствует падению напряжения до 70.7% от максимального значения, в то время как 3-dB-падение мощности означает падение мощности до 50% от ее максимального значения. Согласно известному отношению между напряжением и мощностью Р=U²/R, при заданном значении сопротивления мощность падает ровно до 50% тогда, когда напряжение падает до 70.7%.
По данным журнала Elektor, ширина полосы частот измерялась при мощности равной 35 Вт. 35 Вт выходной мощности преобразуются на нагрузочном резисторе сопротивлением 8 Ом, когда действующее значение выходного напряжения составляет 16.7 В, то есть когда его амплитуда составляет 24 В. Для этого в выходных МОП-транзисторных каскадах требуется, чтобы амплитуда входного напряжения составляла 1 В. На рис. 12.1 изображена частотная характеристика выходного напряжения. Нижняя граничная частота находится на уровне f min=1.5 Гц, верхняя — на уровне f max=127 кГц.

Рис. 12.1. Частотная характеристика выходного напряжения МОП-транзисторного усилителя
Установленная с помощью моделирования эффективная полоса пропускания составляет от 1.5 Гц до 127 кГц.
12.2. Скорость нарастания фронта
Крутизна фронта v aусилителя определяется по минимальному времени t a, которое необходимо этому усилителю, чтобы изменить выходное напряжение на Du aв диапазоне от 10% до 90% максимального неискаженного значения. Крутизна фронта определяется отношением v a=Du a/t a. Без ощутимых искажений выходной МОП-транзисторный каскад позволяет модулирование амплитуды входного напряжения до 1.44 В.
При моделировании характеристики формирования фронта управление усилителя будет осуществляться с помощью источника напряжения VPWL (Voltage Source Partwise Linear). Как и все прочие источники напряжения, VPWL находится в библиотеке SOURCE.slb. Используя этот источник, можно заранее определить временную характеристику напряжения, задав пары значений времени и напряжения, которые связываются линейно (рис. 12.2).

Рис. 12.2. Окно атрибутов источника напряжения VPWL с заданными значениями

Рис. 12.3. Диаграмма выходного напряжения
Чтобы смоделировать характеристику формирования фронта выходного напряжения, были заданы следующие пары значений времени и напряжения:
0с/0В; 1нс/1.44В; 7мкс/1.44В; 7.001мкс/-1.44В; 17мкс/-1.44В; 17.001мкс/1.44В; 21мкс/1.44В
После проведения анализа переходных процессов на экране PROBE была получена диаграмма, изображенная на рис. 12.3, где при R H=8 Ом происходит нарастание входного напряжения из-за того, что прямоугольное входное напряжение имеет амплитуду 1.44 В.
Скорость нарастания фронта выходного напряжения составляет 20 В/мкс.
12.3. Отношение сигнал-шум
Следующее, что нам предстоит определить, - отношение сигнал/шум при выходной мощности 1 Вт и сопротивлении нагрузки 8 Ом. Для этого амплитуда выходного напряжения должна составлять 4 В, что соответствует амплитуде входного напряжения, равной примерно 0.17 В.
Читать дальшеИнтервал:
Закладка: