Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE
- Название:Визуальное моделирование электронных схем в PSPICE
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2008
- Город:Москва
- ISBN:978-5-94074-436-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE краткое содержание
PSPICE определяет промышленный стандарт программ-имитаторов и является самым популярным пакетом моделирования для OS/Windows как у профессионалов, так и у любителей по всему миру. Эта книга — лучшее на сегодняшний день учебное пособие по PSPICE. Курс построен по принципу «от простого к сложному». Первая часть посвящена основам работы с программой. В ней говорится о том, как строить и редактировать чертежи электронных схем, находить нужную информацию в выходном файле, моделировать цепи постоянного и переменного тока, строить диаграммы любой сложности, исследовать частотные характеристики схем. Во второй части подробно рассказывается о различных видах анализов, выполняемых с помощью PSPICE (анализ переходных процессов, параметрический анализ и т.д.). Также в ней содержится руководство по цифровому моделированию и использованию программы-осциллографа PROBE. Третья и четвертая части включают сведения об использовании PSPICE для расчета электрических цепей и цепей регулирования. Описывается, как создать и модифицировать модели компонентов схем.
Книга адресована пользователям различного уровня подготовки: в первую очередь инженерам и конструкторам, профессиональным разработчикам промышленных изделий (электронных схем, технологического оборудования, автомобилей и т.д.), студентам радиотехнических специальностей, а также радиолюбителям.
Прилагаемый к книге компакт-диск содержит рабочие версии программы PSPICE, подробный справочник по PSPICE (на английском языке), библиотеки компонентов, необходимые для работы с книгой, и учебные упражнения.
Визуальное моделирование электронных схем в PSPICE - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
1. Откройте из редактора SCHEMATICS меню Analysis. Выберите опцию Library and Include Files…(Библиотеки и файлы для включения). Откроется одноименное окно (рис. Ч3.8).

Рис. Ч3.8. Окно Library and Include Files
2. В поле File Nameвведите путь к файлу SAMPLE.lib [38] В окне, изображенном на рис. Ч3.9, путь к файлу SAMPLE.lib указан для того случая, когда программа PSPICE установлена на диске Е. Если на вашем компьютере для этого используется другой диск, запись должна быть иной. В остальном вы должны ввести точно такой же путь, как на рис. Ч3.9.
(рис. Ч3.9), а затем щелкните по самой верхней кнопке Add Library*(Добавить библиотеку). После этого путь к файлу SAMPLE появится в списке Library Files(Библиотечные файлы) над строкой NOM.lib*. Щелкните по кнопке OKи вернитесь назад к редактору SCHEMATICS. Теперь вы можете начинать работу с дополнительными файлами. Перед моделированием схемы, где впервые будут использованы элементы новой библиотеки, на экране появится сообщение об ошибке, потому что программа PSPICE к тому моменту еще не будет «знать» новый файл. Вы можете спокойно проигнорировать это сообщение, так как затем PSPICE автоматически создаст индексный файл для новой библиотеки и в следующий раз, когда вам понадобится к ней обратиться, сообщение уже не появится.

Рис. Ч3.9. Путь к библиотеке SAMPLE.lib в поле File Name
Глава 11
Ограничения демонстрационной версии программы PSPICE
Из этой главы вы узнаете, как можно обойти ограничения демонстрационной версии программы PSPICE, сократив число используемых компонентов и не изменив при этом характеристик схемы.
Теперь разделы книги будут называться не уроками, как это было в предыдущих частях книги, которые представляли собой учебное пособие, а главами. Нумерация глав продолжает нумерацию уроков. Таким образом, данная глава является одиннадцатой.
В этой и следующей главах говорится о работе с испытанным выходным МОП-транзисторным каскадом, описанным в журнале ELEKTOR, №12 за 1993 год. Этот выходной каскад с двумя комплементарными самозапирающимися МОП-транзисторами неоднократно оправдывал себя на деле и имеет все, что только можно ожидать от высококачественного выходного каскада класса HiFi. Своими выдающимися качествами МОП-транзисторы (MOSFET) обязаны внутренней гексагональной структуре. Именно поэтому фирма-изготовитель International Rectifier называет такие транзисторы HEXFET.
При проектировании этой схемы вы трижды столкнетесь с ограничениями демонстрационной версии:
1) схема содержит компоненты, которых нет в демонстрационной версии (нет, например, ни одного нужного транзистора);
2) схема содержит тринадцать транзисторов, в то время как демонстрационная версия позволяет моделировать только схемы, включающие не более десяти таких элементов;
3) схема содержит в общей сложности шестьдесят один компонент, но демонстрационная версия позволяет моделировать схемы не более чем из пятидесяти компонентов.
В принципе, есть только одно разумное решение этой проблемы. Вы или руководство должны в срочном порядке позаботиться о том, чтобы ваше предприятие, школа, институт или учебный центр в срочном порядке приобрели полную версию программы PSPICE. И тогда для вас уже не будет существовать никаких ограничений и станут доступны все необходимые компоненты для проектирования абсолютно любых схем. Для профессиональных пользователей стоимость PSPICE составляет около 20.000 DM, однако, когда программа приобретается исключительно в учебных целях для студентов технических специальностей, то компания CADENCE предоставляет настолько большие скидки, что даже скудные бюджеты образовательных учреждений могут позволить себе это приобретение. В Германии программный пакет CADENCE-PSPICE можно приобрести через фирму Hoschar. К сожалению, электронщики-любители, не являющиеся сотрудниками какой-либо школы, колледжа или университета, не могут воспользоваться скидками, предоставляемыми образовательным учреждениям. Поэтому далее мы покажем, как, приложив немного старания и сообразительности, исследовать выходной МОП-транзисторный каскад даже с помощью демонстрационной версии, несмотря на ее ограниченные возможности.
Симметричная конструкция выходного каскада позволит, не изменяя при этом принципа работы схемы, сократить число используемых компонентов, в частности транзисторов. Чтобы понять, за счет чего происходит такое «чудо», внимательно изучите схему, приведенную на рис. 11.1. Проанализировав, из каких компонентов она состоит и как они соединены друг с другом, вы уясните себе принцип работы выходного каскада с двумя комплементарными самозапирающимися МОП-транзисторами.

Рис. 11.1. Выходной каскад с двумя комплементарными выходными транзисторами на МОП-структурах
Компоненты V 1, V 2, V 6и V 8образуют дифференциальный усилитель с источником стабилизированного тока. Для нормального функционирования такого источника необходимо, чтобы потенциал базы транзистора V6 источника стабилизированного тока был максимально стабильным. Обычно это достигается за счет низкоомного делителя, обеспечивающего базовое напряжение, но в данной схеме мы используем весьма стабильное постоянное прямое напряжение светодиода V 8(около 1.7 В). Потенциал коллектора V 1управляет V 9.
Аналогичную функцию имеют и V 3, V 4, V 5и V 7. Коллектор V 3управляет коллектором V 11.
Как и во всех двухтактных усилителях, потенциалы баз двух комплементарных транзисторов V 9и V 11отличаются только на константное постоянное напряжение. В рассматриваемой схеме ровно на 68 В. Обычно потенциал двух названных баз передвигается одним единственным активным транзистором, причем тогда несколько диодов или один стабилитрон должны обеспечивать имеющуюся разницу между базами V 9и V 11. В рассматриваемой схеме для этого используются два (сдвинутых по потенциалу) формирователя, а именно два дифференциальных усилителя.
Теперь стало ясно, каким образом сокращается количество используемых компонентов: один из двух дифференциальных усилителей заменяется источником постоянного напряжения значением 68 В. В результате получается схема, изображенная на рис. 11.2.

Рис. 11.2. Выходной МОП-транзисторный каскад с источником напряжения значением 68 В
Читать дальшеИнтервал:
Закладка: