Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект
- Название:Совместимость. Как контролировать искусственный интеллект
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9370-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект краткое содержание
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.
Совместимость. Как контролировать искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Люди разумны настолько, насколько можно ожидать, что наши действия приведут к достижению поставленных нами целей.
Все прочие характеристики разумности — восприятие, мышление, обучение, изобретательство и т. д. — могут быть поняты через их вклад в нашу способность успешно действовать. С самого начала разработки ИИ интеллектуальность машин определялась аналогично:
Машины разумны настолько, насколько можно ожидать, что их действия приведут к достижению поставленных ими целей.
Поскольку машины, в отличие от людей, не имеют собственных целей, мы говорим им, каких целей нужно достичь. Иными словами, мы строим оптимизирующие машины, ставим перед ними цели, и они принимаются за дело.
Этот общий подход не уникален для ИИ. Он снова и снова применяется в технологических и математических схемах нашего общества. В области теории управления, которая разрабатывает системы управления всем, от авиалайнеров до инсулиновых помп, работа системы заключается в минимизации функции издержек, обычно дающих некоторое отклонение от желаемого поведения. В сфере экономики механизмы политики призваны максимизировать пользу для индивидов, благосостояние групп и прибыль корпораций [9] Некоторые считают, что корпорации, ориентированные на максимизацию прибыли, уже являются вышедшими из-под контроля искусственными сущностями. См., например: Charles Stross, «Dude, you broke the future!» (keynote, 34th Chaos Communications Congress, 2017). См. также: Ted Chiang, «Silicon Valley is turning into its own worst fear», Buzzfeed , December 18, 2017. Эта мысль углубленно исследуется в сб.: Daniel Hillis, «The first machine intelligences», in Possible Minds: Twenty-Five Ways of Looking at AI , ed. John Brockman (Penguin Press, 2019).
. В исследовании операций, направлении, решающем комплексные логистические и производственные проблемы, решение максимизирует ожидаемую сумму вознаграждений во времени. Наконец, в статистике обучающиеся алгоритмы строятся с таким расчетом, чтобы минимизировать ожидаемую функцию потерь, определяющую стоимость ошибки прогноза.
Очевидно, эта общая схема, которую я буду называть стандартной моделью, широко распространена и чрезвычайно действенна. К сожалению, нам не нужны машины, интеллектуальные в рамках стандартной модели.
На оборотную сторону стандартной модели указал в 1960 г. Норберт Винер, легендарный профессор Массачусетского технологического института и один из ведущих математиков середины XX в. Винер только что увидел, как шахматная программа Артура Самуэля научилась играть намного лучше своего создателя. Этот опыт заставил его написать провидческую, но малоизвестную статью «Некоторые нравственные и технические последствия автоматизации» [10] Для своего времени статья Винера была редким примером расхождения с господствующим представлением, что любой технологический прогресс во благо: Norbert Wiener, «Some moral and technical consequences of automation», Science 131 (1960): 1355–58.
. Вот как он формулирует главную мысль:
Если мы используем для достижения своих целей механического посредника, в действие которого не можем эффективно вмешаться… нам нужна полная уверенность в том, что заложенная в машину цель является именно той целью, к которой мы действительно стремимся.
«Заложенная в машину цель» — это те самые задачи, которые машины оптимизируют в стандартной модели. Если мы вводим ошибочные цели в машину, более интеллектуальную, чем мы сами, она достигнет цели и мы проиграем. Описанная мною деградация социальных сетей — просто цветочки, результат оптимизации неверной цели во всемирном масштабе, в сущности, неинтеллектуальным алгоритмом. В главе 5 я опишу намного худшие результаты.
Этому не приходится особенно удивляться. Тысячелетиями мы знали, как опасно получить именно то, о чем мечтаешь. В любой сказке, где герою обещано исполнить три желания, третье всегда отменяет два предыдущих.
В общем представляется, что движение к созданию сверхчеловеческого разума не остановить, но успех может обернуться уничтожением человеческой расы. Однако не все потеряно. Мы должны найти ошибки и исправить их.
Можем ли мы что-то исправить
Проблема заключается в самом базовом определении ИИ. Мы говорим, что машины разумны, поскольку можно ожидать, что их действия приведут к достижению их целей, но не имеем надежного способа добиться того, чтобы их цели совпадали с нашими.
Что, если вместо того, чтобы позволить машинам преследовать их цели, потребовать от них добиваться наших целей? Такая машина, если бы ее можно было построить, была бы не только интеллектуальной, но и полезной для людей. Попробуем следующую формулировку:
Машины полезны настолько, насколько можно ожидать, что их действия достигнут наших целей.
Пожалуй, именно к этому нам все время следовало стремиться.
Разумеется, тут есть трудность: наши цели заключены в нас (всех 8 млрд человек, во всем их великолепном разнообразии), а не в машинах. Тем не менее возможно построить машины, полезные именно в таком понимании. Эти машины неизбежно будут не уверены в наших целях — в конце концов, мы сами в них не уверены, — но, оказывается, это свойство, а не ошибка (то есть хорошо, а не плохо). Неуверенность относительно целей предполагает, что машины неизбежно будут полагаться на людей: спрашивать разрешения, принимать исправления и позволять себя выключить.
Исключение предпосылки, что машины должны иметь определенные цели, означает, что мы должны будем изъять и заменить часть предпосылок ИИ — базовые определения того, что мы пытаемся создать. Это также предполагает перестройку значительной части суперструктуры — совокупности идей и методов по разработке ИИ. В результате возникнут новые отношения людей и машин, которые, я надеюсь, позволят нам благополучно прожить следующие несколько десятилетий.
Глава 2. Разумность людей и машин
Если вы зашли в тупик, имеет смысл вернуться назад и выяснить, в какой момент вы свернули не в ту сторону. Я заявил, что стандартная модель ИИ, в которой машины оптимизируют фиксированную цель, поставленную людьми, — это тупик. Проблема не в том, что у нас может не получиться хорошо выполнить работу по созданию ИИ, а в том, что мы может добиться слишком большого успеха . Само определение успеха применительно к ИИ ошибочно.
Итак, пройдем по собственным следам в обратном направлении вплоть до самого начала. Попытаемся понять, как сложилась наша концепция разумности и как получилось, что она была применена к машинам. Тогда появится шанс предложить лучшее определение того, что следует считать хорошей системой ИИ.
Разумность
Как устроена Вселенная? Как возникла жизнь? Где ключи к пониманию этого? Эти фундаментальные вопросы заслуживают размышлений. Но кто их задает? Как я на них отвечаю? Как может горстка материи — несколько килограммов розовато-серого бланманже, которое мы называем мозгом, — воспринимать, понимать, прогнозировать и управлять невообразимо огромным миром? Очень скоро мозг начинает исследовать сам себя.
Читать дальшеИнтервал:
Закладка: