Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект
- Название:Совместимость. Как контролировать искусственный интеллект
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9370-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект краткое содержание
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.
Совместимость. Как контролировать искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Итак, утверждение, что AlphaGo «имеет предназначение выигрывать», является чрезмерным упрощением. Вот лучшее описание: AlphaGo является результатом несовершенного процесса обучения — обучения с подкреплением посредством игры с собой, — в котором выигрыш является вознаграждением. Тренировочный процесс несовершенен в том смысле, что не может создать идеального игрока в го: AlphaGo изучает функцию оценки позиций го, являющуюся хорошей, но не совершенной, и сочетает ее с предварительным поиском, хорошим, но не совершенным.
Из всего этого следует, что обсуждение, начинающееся словами «допустим, что робот R имеет предназначение Р », приведет к кое-каким догадкам о возможном развитии событий, но не может привести к теоремам о реальных машинах. Нужны намного более детальные и точные определения целей у машин, чтобы можно было гарантированно знать их поведение в долгосрочной перспективе. Исследователи ИИ только начинают понимать, как анализировать даже самые простые типы реальных систем принятия решений [278], не говоря уже о машинах, интеллектуальных настолько, что могут конструировать собственных потомков. Нам еще многое предстоит сделать.
Глава 9. Затруднение: мы
Если бы мир состоял из одной идеально рациональной Гарриет и одного услужливого и почтительного Робби, все было бы прекрасно. Робби постепенно и максимально незаметно изучил бы предпочтения Гарриет и стал бы для нее безупречным помощником. Многообещающее начало — нельзя ли экстраполировать его, например выбрав Гарриет и Робби в качестве модели отношений между человеческой расой и ее машинами, рассматривая то и другое как единые сущности?
Увы, человечество не является единой рациональной сущностью. Оно состоит из противных, завистливых, иррациональных, непоследовательных, непостоянных, обладающих ограниченными вычислительными возможностями, сложных, эволюционирующих, неоднородных сущностей. Их огромное количество. Эти вопросы составляют главный raison d’être {15} общественных наук. Чтобы работать над ИИ, необходимо его дополнить идеями из психологии, экономики, политологии и философии морали [279]. Нам нужно переплавить эти идеи и выковать достаточно прочную структуру, чтобы она могла выдержать колоссальное давление, которое будут оказывать на нас все более интеллектуальные ИИ-системы. Работа над этой задачей едва начата.
Люди — разные
Я начну, пожалуй, с простейшего предмета — неоднородности человечества. При ознакомлении с идеей, что машины должны учиться удовлетворять человеческие предпочтения, люди часто возражают, что у разных культур и даже индивидов сложились разные системы ценностей, следовательно, единая истинная система ценностей для машины невозможна. Это, разумеется, не проблема машины: мы не требуем от нее самостоятельно создать одну истинную систему ценностей, мы лишь хотим, чтобы она предсказывала предпочтения других.
Непонимание того обстоятельства, что неоднородность предпочтений людей может представлять трудность для машин, иногда обусловливается ошибочным представлением, что машина усваивает предпочтения, которые изучает, — например, что домашний робот в вегетарианской семье начнет предпочитать вегетарианство. Не начнет. Ему нужно лишь научиться предсказывать пищевые предпочтения вегетарианцев. Согласно первому принципу, это заставит его избегать готовить мясо для домочадцев. Однако робот также изучит пищевые предпочтения ярых мясоедов, живущих по соседству, и по разрешению своего владельца прекрасно будет готовить для них мясо, если они одолжат его на выходные помочь с организацией праздничного ужина. У робота нет единого комплекса собственных предпочтений, кроме одного предпочтения — помогать людям в удовлетворении их предпочтений.
В определенном смысле он ничем не отличается от шеф-повара ресторана, который учится готовить много разных блюд, чтобы удовлетворить отличающимся друг от друга вкусам посетителей, или международной автомобильной компании, выпускающей леворульные машины для американского рынка и праворульные для британского.
Теоретически машина могла бы изучить 8 млрд моделей предпочтений, по одной на каждого жителя Земли. На практике все гораздо проще. Во-первых, машинам легко обменяться друг с другом получаемыми знаниями. Во-вторых, структуры предпочтений людей имеют очень много общего, и машине не придется изучать каждую модель с нуля.
Представим, например, домашних роботов, которых однажды смогут купить жители калифорнийского Беркли. Распакованные роботы имеют весьма общее изначальное представление, скорее всего, адаптированное под американский рынок, но не под конкретный город, политические взгляды или социоэкономическую принадлежность владельца. Роботы начинают наблюдать членов Партии зеленых города Беркли, которые, оказывается, по сравнению со средним американцем с гораздо большей вероятностью являются вегетарианцами, пользуются возобновляемой и биоразлагаемой упаковкой, при любой возможности отдают предпочтение общественному транспорту и т. д. Оказавшись в «зеленом» домохозяйстве, свежекупленный робот может сразу же начать соответствующим образом модифицировать свои ожидания. Ему незачем изучать данные конкретных людей, как если бы он никогда прежде не видел человека, не говоря уже о члене Партии зеленых. Эта модификация не является неизменной — в Беркли могут быть члены Партии зеленых, которые лакомятся мясом находящихся под угрозой исчезновения китов и ездят на гигантских пожирателях бензина, — но это дает возможность роботу быстрее стать более полезным. Тот же аргумент применим к широкому спектру других личных характеристик, позволяющих в определенной мере предсказать структуры предпочтений индивидов.
Многочисленность людей
Другим очевидным следствием существования более чем одного человека является то, что машине приходится искать компромисс между предпочтениями разных людей. Этот компромисс уже несколько веков является главной темой значительной части гуманитарных наук. Со стороны исследователей ИИ было бы наивно ожидать, что можно просто воспользоваться верными решениями без понимания того, что уже известно. К сожалению, литература по этой теме настолько обширна, что я физически не могу воздать ей должное на этих страницах, и не только потому, что места не хватит, но и поскольку большей ее части я не читал. Я также должен отметить, что практически все труды посвящены решениям, принимаемым людьми, тогда как меня заботят решения, принимаемые машинами. Это принципиальная разница, поскольку у людей есть личные права, которые могут конфликтовать с любым предполагаемым обязательством действовать в интересах других, а у машин их нет. Например, мы не ждем и не требуем от типичного человека, чтобы он жертвовал своей жизнью ради спасения других, но, безусловно, будем требовать от роботов жертвовать своим существованием, чтобы спасти жизни людей.
Читать дальшеИнтервал:
Закладка: