Джереми Блум - Изучаем Arduino: инструметы и методы технического волшебства

Тут можно читать онлайн Джереми Блум - Изучаем Arduino: инструметы и методы технического волшебства - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая околокомпьтерная литература, издательство БХВ-Петербург, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джереми Блум - Изучаем Arduino: инструметы и методы технического волшебства краткое содержание

Изучаем Arduino: инструметы и методы технического волшебства - описание и краткое содержание, автор Джереми Блум, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга посвящена проектированию электронных устройств на основе микроконтроллерной платформы Arduino. Приведены основные сведения об аппаратном и программном обеспечении Arduino. Изложены принципы программирования в интегрированной среде Arduino IDE. Показано, как анализировать электрические схемы, читать технические описания, выбирать подходящие детали для собственных проектов. Приведены примеры использования и описание различных датчиков, электродвигателей, сервоприводов, индикаторов, проводных и беспроводных интерфейсов передачи данных. В каждой главе перечислены используемые комплектующие, приведены монтажные схемы, подробно описаны листинги программ. Имеются ссылки на сайт информационной поддержки книги. Материал ориентирован на применение несложных и недорогих комплектующих для экспериментов в домашних условиях.
Для радиолюбителей

Изучаем Arduino: инструметы и методы технического волшебства - читать онлайн бесплатно полную версию (весь текст целиком)

Изучаем Arduino: инструметы и методы технического волшебства - читать книгу онлайн бесплатно, автор Джереми Блум
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Последовательность действий для связи с устройством SPI выглядит следующим образом:

1. У становить низкий уровень на линии SS устройства, с которым хотите установить связь.

2. Переключать на тактовой линии уровень сигнала вверх и вниз со скоростью, меньшей или равной скорости передачи, поддерживаемой ведомым устройством.

3. На каждом такте отправлять 1 бит данных по линии MOSI или получать 1 бит данных по линии MISO.

- 190 -

4. Продолжать, пока передача (или прием) не закончится, и остановить переключения тактовой линии.

5. Установить на SS высокий уровень.

Обратите внимание, что на каждом такте данные должны быть отправлены (или получены). Например, далее в сценарии связи с цифровым потенциометром плата Arduino будет посылать данные, но ничего не получать от ведомого устройства.

9.3. Сравнение SPI и I 2C

Многие виды устройств, в том числе акселерометры, цифровые потенциометры, дисплеи и т. п., доступны и в SPI- и в I 2C-версиях. Что лучше выбрать? В табл. 9.3

перечислены некоторые преимущества устройств I 2C и SPI. В конечном счете, выбор устройства зависит от конкретной ситуации. Большинство начинающих считают, что работать с устройствами SPI легче, чем с устройствами I 2C.

Таблица 9.3. Сравнение протоколов SPI и I 2C

Преимущества SPI

Преимущества I 2C

Может работать на более высокой скорости

Для организации обмена требуется только две линии

Легче программируется

Имеет аппаратную поддержку Arduino

Не требует подтягивающих резисторов

Имеет аппаратную поддержку Arduino

9.4. Подключение цифрового потенциометра SPI

Теперь пора применить полученные знания на практике. Рассмотрим устройство управления яркостью светодиодов с помощью цифрового потенциометра ( кратко называемого digipot). В данном примере используем микросхему SPI цифрового потенциометра МСР4231 10ЗЕ. Доступно несколько вариантов данного чипа с различным значением сопротивления. Как и обычный потенциометр, цифровой имеет регулируемый вывод, который определяет сопротивление между двумя выводами микросхемы. Микросхема МСР4231 содержит два потенциометра на одном корпусе. Разрядность каждого из них составляет 7 бит, что определяет 128 значений в диапазоне от 0 до 10 кОм. Сначала с помощью цифрового потенциометра будем менять яркость свечения светодиода, а затем используем digipot для регулировки громкости динамика. Завершив эти два проекта, вы получите основу для реализации более сложных конструкций.

9.4.1. Техническое описание МСР4231

Прежде всего, следует изучить техническое описание микросхемы МСР4231, которое можно найти через поисковую систему Google. Ссылки на техническое опи-

- 191 -

сание для МСР4231 присутствуют на странице www.exploringarduino.com/content/ch9.

В техническом описании можно найти ответы на следующие вопросы:

• цоколевка микросхемы;

• какие выводы являются управляющими;

• как регулируется в данной микросхеме сопротивление потенциометра;

• какие команды SPI необходимы, чтобы управлять двумя потенциометрами.

Чтобы найти ответы на эти вопросы, на рис. 9.2-9.4 приведены некоторые важные фрагменты технического описания. Прежде всего, взгляните на цоколевку микросхемы МСР4231, изображенную на рис. 9.2.

Рис 92 Цоколевка микросхемы МСР4231 При подготовке к работе с новым - фото 86

Рис. 9.2. Цоколевка микросхемы МСР4231

При подготовке к работе с новым устройством необходимо сначала разобраться с назначением контактов. Вот назначение выводов МСР4231:

• РОА, POW и РОВ -выводы первого потенциометра;

• PIA, PIW и PIB-выводы второго потенциометра;

• VDD -вывод питания микросхемы 5 В;

• VSS -вывод подключения к земле;

• CS-контакт SS для интерфейса SPI, черта сверху означает, что активный уровень низкий (0 В -чип выбран, 5 В -не выбран);

• SDI и SDO - контакты последовательного ввода и вывода данных ( соответствуют MOSI и MISO);

• SCK -линия синхронизации SPI;

• SHDN и WP -контакты для выключения и защиты от записи, соответственно.

Для МСР4231 контакт WP не задействован и его можно игнорировать. Активный уровень на контакте SHDN низкий, как и на выводе CS. При низком уровне средний вывод потенциометра отключен. Чтобы потенциометр был всегда включен, необходимо соединить контакт SHDN непосредственно с шиной 5 В.

Далее необходимо узнать полное сопротивление потенциометра и сопротивление среднего вывода. Подобно обычному потенциометру, сопротивление между клеммами А и В в цифровом тоже постоянно. Средний вывод также имеет собственное

- 192 -

сопротивление, и это нужно принимать во внимание. Обратимся к пятой странице технического описания (рис. 9.3).

Прежде всего, выясним полное сопротивление потенциометра, обозначаемое R д в,

Доступны четыре варианта этого чипа, каждый с разным значением сопротивления (от 5 до 100 кОм). Далее используем вариант 103, сопротивление которого составляет примерно 10 кОм. Важно отметить, что цифровые потенциометры, как правило, имеют довольно большой разброс (из рис. 9.3 видно, что фактическое сопротивление может изменяться на ±20% ). Также следует отметить, что собственное сопротивление среднего вывода потенциометра составляет от 75 до 160 Ом. Это сопротивление нужно учитывать, особенно при управлении динамиком или светодиодом.

AC/DC CHARACTERISTICS (CONTINUED)

Рис 93 Фрагмент технического описания микросхемы МСР4231 Далее разберемся с - фото 87

Рис. 9.3. Фрагмент технического описания микросхемы МСР4231

Далее разберемся с командами для управления цифровым потенциометром. На МСР4231 необходимо отправить две команды. Первая определяет выбор нужного потенциометра, вторая устанавливает текущее значение сопротивления выбранного потенциометра. Формат команд приведен на рис. 9.4.

Из рис. 9.4 ясно, что существуют два вида команд: 8-разрядные и 16-разрядные.

Первая команда позволяет увеличить сопротивление потенциометра, вторая установить произвольное значение сопротивления. Рассмотрим 16-битовую команду, обеспечивающую большую гибкость. По шине данных передается адрес ячейки памяти, код команды ( чтение, запись, приращение или уменьшение) и значение данных.

Рис 94 Формат команд МСР4231 В техническом описании приведены адреса - фото 88

Рис. 9.4. Формат команд МСР4231

В техническом описании приведены адреса регистров, связанных с каждым потенциометром. Регистр первого потенциометра расположен в ячейке памяти по адресу 0, второго - по адресу 1. Зная это, можно отправить необходимые команды на установку значений для каждого потенциометра. Чтобы задать значение для первого потенциометра, первый байт будет содержать В00000000, а второй - величину сопротивления (0-128). Чтобы установить значение для второго потенциометра, первый байт будет равен B000 10000, а второй - величине сопротивления. Как видно из рис. 9.4, первые 4 бита первого байта- это адрес регистра памяти, следующие 2 бита- код команды (00 - для записи), следующие 2 бита - это старшие биты величины сопротивления (должны быть равны нулю, потому что максимальное значение для этого потенциометра составляет 128).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джереми Блум читать все книги автора по порядку

Джереми Блум - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Изучаем Arduino: инструметы и методы технического волшебства отзывы


Отзывы читателей о книге Изучаем Arduino: инструметы и методы технического волшебства, автор: Джереми Блум. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x