Джереми Блум - Изучаем Arduino: инструметы и методы технического волшебства

Тут можно читать онлайн Джереми Блум - Изучаем Arduino: инструметы и методы технического волшебства - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая околокомпьтерная литература, издательство БХВ-Петербург, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джереми Блум - Изучаем Arduino: инструметы и методы технического волшебства краткое содержание

Изучаем Arduino: инструметы и методы технического волшебства - описание и краткое содержание, автор Джереми Блум, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга посвящена проектированию электронных устройств на основе микроконтроллерной платформы Arduino. Приведены основные сведения об аппаратном и программном обеспечении Arduino. Изложены принципы программирования в интегрированной среде Arduino IDE. Показано, как анализировать электрические схемы, читать технические описания, выбирать подходящие детали для собственных проектов. Приведены примеры использования и описание различных датчиков, электродвигателей, сервоприводов, индикаторов, проводных и беспроводных интерфейсов передачи данных. В каждой главе перечислены используемые комплектующие, приведены монтажные схемы, подробно описаны листинги программ. Имеются ссылки на сайт информационной поддержки книги. Материал ориентирован на применение несложных и недорогих комплектующих для экспериментов в домашних условиях.
Для радиолюбителей

Изучаем Arduino: инструметы и методы технического волшебства - читать онлайн бесплатно полную версию (весь текст целиком)

Изучаем Arduino: инструметы и методы технического волшебства - читать книгу онлайн бесплатно, автор Джереми Блум
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

{

pinMode (LED, OUTPUT); // Конфигурируем контакт светодиода как выход

}

void loop()

{

for (int i=100; i<=1000; i=i+100)

{

digitalWrite(LED, HIGH);

delay(i);

digitalWrite(LED, LOW);

delay(i);

}

}

Скомпилируйте код листинга 2.2, загрузите его на свою плату Arduino и посмотрите, что происходит. Теперь разберемся, как это работает.

- 49 -

Оператор for всегда содержит три выражения, разделенные точкой с запятой:

• первое выражение присваивает начальное значение переменной-счетчику цикла.

В нашем примере переменная i получает начальное значение 100;

• второе выражение указывает, когда цикл должен остановиться. Операторы в теле цикла будут выполняться снова и снова, пока условие истинно. Запись <= означает меньше или равно. Таким образом, этот цикл будет выполняться тех пор, пока переменная i меньше или равна 1000;

• последнее выражение указывает, что должно произойти с переменной i каждый раз после выполнения операторов тела цикла. В нашем примере, значение счетчика цикла увеличивается на 100.

Чтобы лучше понять работу оператора for, подробно рассмотрим, что происходит за два прохода цикла:

1. Значение переменной i равно 100, 100 меньше или равно 1000, значит выполнять код в теле цикла.

2. На контакте 9 установлено значение HIGH, светодиод горит 100 мс (текущее значение i).

3. На контакт 9 подано значение LOW, светодиод потушен 100 мс (текущее значение i).

4. В конце цикла значение переменной i увеличивается на 100, теперь i равно 200.

5. 200 меньше или равно 1000, цикл повторяется снова.

6. На контакте 9 установлено значение HIGH, светодиод горит 200 мс (текущее значение i).

7. На контакт 9 подано значение LOW, светодиод потушен 200 мс (текущее значение i).

8. В конце цикла значение переменной i увеличивается на 100, теперь i равно 300.

9. Этот процесс повторяется, пока i не превосходит 1000 и затем i снова принимает значение 100 и все повторяется заново.

Итак, вы разобрались с работой цифровых контактов платы Arduino. Далее мы расскажем, как с помощью ШИМ сформировать аналоговые сигналы на цифровых контактах платы Arduino.

2.6. Широтно-импульсная модуляция с помощью analogWrite()

Вы освоили контроль над цифровыми контактами Arduino. Они очень удобны для переключения светодиодов, управления реле и двигателями постоянного тока. Но что делать, если необходимо вывести напряжение, отличное от 0 и 5 В. С помощью контактов одной только платы Arduino Uno это невозможно. Придется задействовать цифроаналоговый преобразователь или взять плату Arduino Due или добавить внешнюю микросхему ЦАП.

- 50 -

Тем не менее, можно сымитировать генерацию аналоговых значений на цифровых контактах с помощью широтно-импульсной модуляции (ШИМ). Для некоторых контактов Arduino сформировать ШИМ-сигнал можно командой analogWrite().

Контакты, которые могут выдавать ШИМ-сигнал на определенные периферийные устройства, помечены символом - на плате Arduino. На Arduino Uno контакты 3, 5, 6, 9, 10, 11 поддерживают выдачу ШИМ-сигнала. При наличии Arduino Uno проверить команду analogWrite() можно с помощью схемы, изображенной на рис. 2.1.

Если уменьшить напряжение на контакте 9 Arduino, яркость свечения светодиода должна стать меньше, потому что снизится ток, текущий через него. Этого эффекта можно добиться с помощью ШИМ и команды analogWrite().

Функция analogWrite() имеет два аргумента: номер контакта и 8-разрядное значение в диапазоне от 0 до 255, устанавливаемое на этом контакте.

В листинге 2.3 приведен код программы генерации ШИМ-сигнала на контакте 9 для плавного управления яркостью светодиода.

Листинг 2.3. Плавное изменение яркости светодиода — fade.ino

const int LED=9; // Константа номера контакта светодиода

void setup()

{

pinMode (LED, OUTPUT); // Конфигурируем контакт светодиода как выход

}

void loop()

{

for (int i=0; i<256; i++)

{

analogWrite(LED, i);

delay (10);

}

for (int i=255; i>=0; i--)

{

analogWrite(LED, i);

delay(10);

}

}

Что будет происходить со светодиодом при выполнении листинга 2.3? Вы будете наблюдать, как свечение светодиода изменяется от тусклого к яркому в одном цикле for, а затем от яркого к тусклому в другом цикле for. Все это будет происходить в основном цикле loop() до бесконечности. Обязательно обратите внимание на различие двух циклов for. В первом цикле выражение i++ является сокращением кода i=i+1. Аналогично, запись i-- эквивалентна коду i=i-1. Первый цикл плавно зажигает светодиод до его максимальной яркости, второй - постепенно гасит его.

- 51 -

Во многих случаях ШИМ пригодна для эмуляции аналогового выхода, но когда требуется неискаженный аналоговый сигнал, этот вариант неприемлем. Например, ШИМ отлично подходит для регулировки скорости двигателя постоянного тока (примеры будут приведены в следующих главах), но не годится для управления аудиоколонками (без дополнительной внешней схемы).

Чтобы понять все тонкости, разберемся, как на самом деле работает ШИМ. Рассмотрим графики, представленные на рис. 2.4.

ШИМ представляет собой изменение скважности ( отношения периода к длительности импульса) прямоугольной последовательности импульсов. Скважность можно трактовать как процент времени, когда прямоугольный импульс имеет уровень HIGH, ко всему периоду повторения. Скважность 50% означает, что половину периода сигнал имеет высокий уровень, а половину - низкий.

Рис 24 ШИМсигналы с различной скважностью Функция analogWrite - фото 17

Рис. 2.4. ШИМ-сигналы с различной скважностью

Функция analogWrite() устанавливает скважность последовательности прямоугольных импульсов в зависимости от значения, передаваемого ей:

• значение аргумента analogWrite(), равное нулю, задает скважность 0% (всегда LOW);

• значение 255 -скважность 100% (всегда HIGH);

• значение 127 соответствует скважности 50% (половина времени HIGH, половина времени LOW).

На графиках рис. 2.4 видно, что для сигнала со скважностью 25% значение HIGH действует в течение четверти периода, а остальные 75% времени установлено значение LOW. Частота прямоугольной последовательности импульсов в случае

- 52 -

с Arduino составляет приблизительно 490 Гц. Другими словами, уровень сигнала меняется от высокого (5 В) к низкому (0 В) приблизительно 490 раз каждую секунду.

Как видим, напряжение, подаваемое на светодиод, на самом деле не понижается, почему же при уменьшении скважности наблюдается спад яркости свечения светодиода? Это связано с особенностью нашего зрения. Если светодиод включается и выключается один раз за 1 мс (при скважности 50%), то вам кажется, что яркость свечения светодиода составляет приблизительно 50% от максимальной, потому что переключение происходит быстрее, чем глаза могут это зафиксировать. Ваш мозг фактически усредняет сигнал и создается впечатление, что светодиод работает на половине яркости.

2.7. Считывание данных с цифровых контактов

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джереми Блум читать все книги автора по порядку

Джереми Блум - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Изучаем Arduino: инструметы и методы технического волшебства отзывы


Отзывы читателей о книге Изучаем Arduino: инструметы и методы технического волшебства, автор: Джереми Блум. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x