Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим
- Название:Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2014
- Город:М.
- ISBN:978-5-91657-936-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим краткое содержание
Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Многие популярнейшие сайты не скрывают свою симпатию к неточности. Взглянув на значок Twitter или на кнопку «Нравится» на веб-странице Facebook, можно увидеть количество других людей, которые их нажали. Пока числа небольшие, например 63, каждое нажатие идет в расчет. Но при больших количествах нажатий указывается лишь приблизительное количество, например 4 тысячи. Нельзя сказать, что система не знает точных цифр. Просто с увеличением масштаба точность уже не играет большой роли. Кроме того, числа могут меняться так быстро, что на момент отображения будут уже неактуальны. Такого же принципа придерживается почтовая служба Gmail компании Google, в которой время последних сообщений указывается с точностью до минуты, например «11 минут назад», но более длительные интервалы округляются, например «2 часа назад».
Область бизнес-аналитики и аналитического программного обеспечения долгое время строилась вокруг обещания клиентам «единой версии правды» — популярного выражения среди поставщиков технологий в этих областях в 2000-х годах. Руководители произносили эту фразу без иронии. Некоторые так поступают и до сих пор. Под этой фразой подразумевается, что все, кто получает доступ к информационно-технологическим системам компании, могут использовать одни и те же данные. А значит, отделам маркетинга и продаж не придется спорить, чьи данные о количестве клиентов и продаж правильнее, еще до начала встречи. Исходя из сказанного, их интересы могут во многом совпадать, если факты излагаются единообразно.
Идея «единой версии правды» кардинально меняется. И суть не в том, чтобы согласиться с тем, что единой правды не существует. Важно понять, что гнаться за ней — неблагодарное дело. Для того чтобы пожинать плоды освоения масштабных данных, нужно признать, что беспорядочность здесь — в порядке вещей, и не нужно тратить лишнюю энергию на то, чтобы от нее избавиться.
Мы даже можем наблюдать, как характерные черты неточности проникают в одну из наименее терпимых к ней областей — проектирование баз данных. Для обычных механизмов системы управления базами данных (СУБД) требуются точные и хорошо структурированные данные, которые не просто хранятся, а разбиваются на «записи» с полями. Каждое поле содержит информацию конкретного типа и длины. Например, в числовое поле длиной в семь цифр невозможно записать сумму, равную десяти миллионам и более. А в поле для телефонных номеров не получится ввести «недоступен». Приспособиться к таким изменениям можно, только изменив структуру базы данных. Мы все еще воюем с этими ограничениями на компьютерах и смартфонах, когда программное обеспечение отказывается принимать данные, которые мы хотим ввести.
Индексы тоже предопределены, и это ограничивает возможности поиска. А чтобы добавить новый индекс, его создают с нуля, затрачивая время. Обычные реляционные базы данных предназначены для работы в области разреженных данных, которые можно и следует тщательно проверять. В такой области вопросы, на которые нужно ответить с помощью данных, известны изначально, поэтому база данных служит именно для эффективного ответа на них.
Однако эта точка зрения на хранение и анализ данных все более расходится с реальностью. Теперь в нашем распоряжении имеются большие объемы данных разного типа и качества. Данные редко вписываются в определенные категории, известные изначально. И вопросы, на которые мы хотели бы получить ответ, тоже часто возникают только в процессе сбора данных или работы с ними.
Эти реалии привели к созданию новых структур баз данных. Старые принципы создания записей и предопределенных полей, отражающих четко заданную иерархию информации, остались в прошлом. Долгое время самым распространенным языком доступа к базе данных был SQL («структурированный язык запросов»). Само название говорит о его жесткости. Но в последние годы произошел переход в сторону так называемой технологии NoSQL, при которой в базах данных не требуется предопределенная структура записей. Допускаются данные различного типа и размера. При этом они все так же доступны для поиска. Беспорядок, который допускается в структуре таких баз данных, компенсируется тем, что для их хранения и обработки требуется больше ресурсов. И все же, учитывая резкое падение затрат на хранение и обработку, этот компромисс мы можем себе позволить.
Пэт Хеллэнд, один из ведущих мировых авторитетов по вопросам проектирования баз данных в корпорации Microsoft, в статье «Если у вас слишком много данных, то и “достаточно хорошо” — уже хорошо» (If You Have Too Much Data, then ‘Good Enough’ Is Good Enough) описывает это явление как фундаментальный переход. Определив несколько основных принципов традиционного проектирования баз данных, которые были подорваны беспорядочными данными различной точности и происхождения, он изложил такие выводы: «Мы больше не можем претендовать на то, чтобы жить в чистом мире [информации]. Обработка больших данных влечет за собой неизбежные потери информации. Зато вы получаете быстрый результат». «Не страшно, если мы получаем ответы с потерями, — зачастую это вполне соответствует бизнес-потребностям», — подытожил Хеллэнд.
Традиционное проектирование баз данных обещает стабильное получение единообразного результата. Спрашивая у бухгалтера о состоянии баланса, вы ожидаете получить точную сумму. А повторив свой запрос через несколько секунд, вы хотели бы, чтобы система выдала такой же результат при условии, что ничего не изменилось. Однако по мере роста объема данных и увеличения количества пользователей, имеющих доступ к системе, поддерживать такое единообразие становится все труднее.
Большие наборы данных не хранятся централизованно. Как правило, они распределяются между несколькими жесткими дисками и компьютерами. Для обеспечения надежности и скорости запись может храниться в двух или трех разных расположениях. Если обновить запись в одном расположении, то данные в других расположениях будут считаться неправильными, пока их тоже не обновят. Традиционным системам было свойственно ожидать завершения всех обновлений. Но это менее практично, когда данные широко распространены, а сервер атакуется десятками тысяч запросов в секунду. В таком случае беспорядочность — неплохое решение.
Типичным примером перехода, о котором идет речь, стала популярность системы Hadoop — конкурирующего аналога системы Google MapReduce с открытым исходным кодом. Hadoop отлично справляется с обработкой больших объемов данных, разбивая их на мелкие фрагменты и выделяя участки для других компьютеров. Она исходит из того, что оборудование может отказать, поэтому создает резервную копию. Система также предполагает, что поступающие данные не упорядочены и не выверены (а по факту и не могут быть выверены до обработки из-за поистине огромного объема). При типичном анализе данных в первую очередь требуется выполнить ETL (от англ. Extract, Transform, Load — «извлечение, преобразование, загрузка»), чтобы переместить данные в расположение для их анализа. Hadoop обходится без таких тонкостей. Напротив, исходя из того, что количество данных настолько велико, что их невозможно переместить, Hadoop анализирует данные на месте.
Читать дальшеИнтервал:
Закладка: