Владимир Пекунов - Технологии автоматического дедуктивного распараллеливания в языке Planning C

Тут можно читать онлайн Владимир Пекунов - Технологии автоматического дедуктивного распараллеливания в языке Planning C - бесплатно ознакомительный отрывок. Жанр: Прочая околокомпьтерная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Пекунов - Технологии автоматического дедуктивного распараллеливания в языке Planning C краткое содержание

Технологии автоматического дедуктивного распараллеливания в языке Planning C - описание и краткое содержание, автор Владимир Пекунов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Работа посвящена решению проблемы автоматического распараллеливания C-программ с применением средств построения языковых расширений языка Planning C 2.0. Предложены механизмы реализации расширений, доказана теорема об их реализуемости. Предложена новая технология распараллеливания тел циклов, состоящих из двух зависимых по данным частей. Предложена технология оптимизирующей векторизации многократно выполняемых циклов с расходящимися трассами итераций на векторных расширителях.

Технологии автоматического дедуктивного распараллеливания в языке Planning C - читать онлайн бесплатно ознакомительный отрывок

Технологии автоматического дедуктивного распараллеливания в языке Planning C - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Пекунов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Технологии автоматического дедуктивного распараллеливания в языке Planning C

Владимир Викторович Пекунов

© Владимир Викторович Пекунов, 2022

ISBN 978-5-0056-3553-2

Создано в интеллектуальной издательской системе Ridero

Введение

В настоящее время активно развиваются технологии, связанные с решением ряда интеллектуальных задач, подразумевающих обработку больших массивов структурированных или слабо структурированных данных с применением более или менее трудоемких логических [12], символьных [11] или численных алгоритмов (см., например, [2, 14, 21]. Это, в первую очередь, технологии интеллектуальной обработки данных, к которым относятся разнообразные алгоритмы поиска логических и/или математических формальных закономерностей в данных (Big Data/Data Mining [7, 22]): деревья решения, машины поддерживающих векторов [22], нейронные сети [22, 24], МГУА [7] и иные интерполяторы и экстраполяторы [11]. Во вторую очередь, назовем элементы технологий поддержки диалога с пользователем на естественном языке (см., например, [22]). Далее назовем ряд технологий математического моделирования различных процессов, например, в сплошных средах: моделирования образования и распространения загрязнений [10, 13, 14, 35], прогнозирования погоды [41], прогнозирования изменений климата [6, 41], моделирования обтекания различных технических объектов [28], прочностные и иные трудоемкие расчеты, связанные с моделированием (см., например, [5]).

Решение (даже частичное) подавляющего большинства перечисленных выше проблем подразумевает выполнение огромных объемов расчетов. Неудивительно, что для осуществления подобных расчетов наиболее часто применяются параллельные или распределенные системы [4, 27], способные их выполнить за разумное время. Программирование таких систем, особенно в случае нетривиальных алгоритмов, является достаточно сложной задачей, к решению которой часто привлекаются специалисты в области параллельных/распределенных вычислений. Однако и в этом случае разработка и реализация параллельных алгоритмов занимает достаточно большое количество времени и требует тщательной отладки.

Далее заметим, что параллельными системами, содержащими процессор с несколькими ядрами и, нередко, многоядерные видеокарты, являются даже современные персональные ЭВМ. В простых случаях проблемой адекватного распределения нагрузки в таких ЭВМ занимается операционная система, помещая различные процессы/потоки для исполнения на различные ядра.

Это, несомненно, дает определенный эффект, однако следует заметить, что полноценная эффективная загрузка вычислительных ресурсов современной ЭВМ, в общем случае, все-таки требует, как минимум, организации многопоточности в разрабатываемых программах, а в идеальном случае – тщательного распараллеливания применяемых алгоритмов, что также требует специальных знаний в области параллельных вычислений.

Логичным является вывод о том, что эффективное применение вычислительных ресурсов (как для решения задач высокой сложности, так и для более рядовых задач) в настоящее время в большей или меньшей степени требует распараллеливания вычислений, подразумевающего наличие специальных знаний в этой области. Однако существенная часть ученых-исследователей и многие рядовые программисты не обладают ни такими знаниями, ни соответствующими навыками алгоритмизации. Отсюда можно заключить, что актуальна задача автоматического распараллеливания программ .

Итак, данная работа будет посвящена автоматическому распараллеливанию C-программ (дающих высокую эффективность исполнения кода, поскольку язык С – один из наиболее близких к машинному, уступающий, возможно, лишь языкам класса Форт), однако изложенные в ней технологии пригодны для распараллеливания программ, написанных и на иных алгоритмических языках.

Целью данной работы является повышение эффективности исполнения C-программ, исполняемых на различных типах параллельных/распределенных систем, к которым можно отнести не только суперЭВМ, но и подавляющее большинство современных рядовых ЭВМ (в том числе с SIMT-расширителями, такими как многоядерные видеокарты). Соответственно, следует стремиться: а) к максимальной многоплатформенности получаемых распараллеленных C-программ и б) к оптимальной трудоемкости разработки адекватных параллелизаторов, подразумевающей достаточную мощность средств разработки в сочетании с их простотой. Для достижения данной цели сформулируем задачи :

а) рассмотреть современные подходы к автоматизированному распараллеливанию императивных (в том числе написанных на языке C) программ;

б) выбрать платформу, предлагающую достаточно простые и мощные средства реализации автоматического распараллеливания;

в) предложить новые технологии распараллеливания, применение которых может быть автоматизировано;

г) разработать подход и алгоритмы автоматического распараллеливания C-программ;

д) провести испытания разработанных программных средств для автоматического распараллеливания на примере простых программ.

Глава 1. Подходы к распараллеливанию императивных программ

Целью данной небольшой главы является определение наиболее адекватного подхода к автоматическому распараллеливанию императивных программ. Для реализации данной цели поставим следующие задачи:

а) провести краткий обзор современных основных подходов к автоматическому/автоматизированному распараллеливанию;

б) выбрать наиболее соответствующий поставленным в работе целям подход;

в) определить средства распараллеливания и программную платформу для реализации автоматического распараллеливания.

1.1. Обзор подходов к автоматическому/автоматизированному распараллеливанию

Распараллеливание императивных программ обычно заключается в следующем: а) адекватном анализе или непосредственно исходного кода программы, или промежуточного/машинного кода, полученного в результате трансляции программы, с целью выявления одного или нескольких видов скрытого параллелизма и б) эффективной реализации выявленного параллелизма путем переработки исходного, промежуточного и/или машинного кода с внесением в него дополнительных распараллеливающих конструкций. При этом мы предполагаем, что исходный код программы (до распараллеливания) не переписывался (для облегчения распараллеливания) существенным образом (в отличие, например, от подхода, изложенного в работе [26]).

Анализ кода обычно сводится к обнаружению параллелизма циклов (обычно это параллелизм по данным и, реже, по процессам) и параллелизма подзадач

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Пекунов читать все книги автора по порядку

Владимир Пекунов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Технологии автоматического дедуктивного распараллеливания в языке Planning C отзывы


Отзывы читателей о книге Технологии автоматического дедуктивного распараллеливания в языке Planning C, автор: Владимир Пекунов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x