Марк Руссинович - 1.Внутреннее устройство Windows (гл. 1-4)
- Название:1.Внутреннее устройство Windows (гл. 1-4)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марк Руссинович - 1.Внутреннее устройство Windows (гл. 1-4) краткое содержание
Книга посвящена внутреннему устройству и алгоритмам работы основных компонентов операционной системы Microsoft Windows — Windows Server 2003, Windows XP и Windows 2000 — и файловой системы NTFS. Детально рассмотрены системные механизмы: диспетчеризация ловушек и прерываний, DPC, APC, LPC, RPC, синхронизация, системные рабочие потоки, глобальные флаги и др. Также описываются все этапы загрузки операционной системы и завершения ее работы. B четвертом издании книги больше внимания уделяется глубокому анализу и устранению проблем, из-за которых происходит крах операционной системы или из-за которых ее не удается загрузить. Кроме того, рассматриваются детали реализации поддержки аппаратных платформ AMD x64 и Intel IA64. Книга состоит из 14 глав, словаря терминов и предметного указателя. Книга предназначена системным администраторам, разработчикам серьезных приложений и всем, кто хочет понять, как устроена операционная система Windows.
Названия всех команд, диалоговых окон и других интерфейсных элементов операционной системы приведены как на английском языке, так и на русском.
Версия Fb2 редакции — 1.5. Об ошибках просьба сообщать по адресу — general2008@ukr.net.
1.Внутреннее устройство Windows (гл. 1-4) - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Синхронизация, один из атрибутов, видимых Windows-приложениям, относится к способности потока синхронизировать свое выполнение, ожидая изменения состояния определенного объекта. Поток можно синхронизировать по таким объектам исполнительной системы, как задание, процесс, поток, файл, событие, семафор, мьютекс и таймер. Другие объекты исполнительной системы не поддерживают синхронизацию. Способность объекта к синхронизации зависит от того, содержит ли он встроенный объект диспетчера — объект ядра, который будет рассмотрен далее в этой главе.
Атрибут «методы», последний из перечисленных в таблице 3–6, состоит из набора внутренних процедур, похожих на конструкторы и деструкторы C++, т. е. на процедуры, автоматически вызываемые при создании или уничтожении объекта. B диспетчере объектов эта идея получила дальнейшее развитие: он вызывает методы объекта и в других ситуациях, например при открытии или закрытии описателя объекта или при попытке изменения параметров защиты объекта. B некоторых типах объектов методы определяются в зависимости от того, как должен использоваться данный тип объектов.
При создании нового типа объектов компонент исполнительной системы может зарегистрировать у диспетчера объектов один или несколько методов. После этого диспетчер объектов вызывает методы на определенных этапах жизненного цикла объектов данного типа — обычно при их создании, удалении или модификации. Поддерживаемые диспетчером объектов методы перечислены в таблице 3–7.

Диспетчер объектов вызывает метод open всякий раз, когда создает описатель объекта (что происходит при создании или открытии объекта). Однако метод open определен только в одном типе объектов — WindowStation. Этот метод необходим таким объектам для того, чтобы Win32k.sys мог использовать часть памяти совместно с процессом, который служит в качестве пула памяти, связанного с объектом «рабочий стол».
Пример использования метода close можно найти в подсистеме ввода-вывода. Диспетчер ввода-вывода регистрирует метод close для объектов типа «файл», а диспетчер объектов вызывает метод close при закрытии каждого описателя объекта этого типа. Метод close проверяет, не осталось ли у процесса, закрывающего описатель файла, каких-либо блокировок для файла, и, если таковые есть, снимает их. Диспетчер объектов не может и не должен самостоятельно проверять наличие блокировок для файла.
Перед удалением временного объекта из памяти диспетчер объектов вызывает метод delete, если он зарегистрирован. Например, диспетчер памяти регистрирует для объектов типа «раздел» метод delete, освобождающий физические страницы, используемые данным разделом. Перед удалением объекта «раздел» этот метод также проверяет различные внутренние структуры данных, выделенные для раздела диспетчером памяти. Диспетчер объектов не мог бы сделать эту работу, поскольку он ничего не знает о внутреннем устройстве диспетчера памяти. Методы delete других объектов выполняют аналогичные функции.
Если диспетчер объектов находит существующий вне его пространства имен объект, метод parse (по аналогии с методом query name) позволяет этому диспетчеру передавать управление вторичному диспетчеру объектов. Когда диспетчер объектов анализирует имя объекта, он приостанавливает анализ, встретив объект с сопоставленным методом parse, и вызывает метод parse, передавая ему оставшуюся часть строки с именем объекта. Кроме пространства имен диспетчера объектов, в Windows есть еще два пространства имен: реестра (реализуемое диспетчером конфигурации) и файловой системы (реализуемое диспетчером ввода-вывода через драйверы файловой системы). O диспетчере конфигурации см. главу 5; о диспетчере ввода-вывода и драйверах файловой системы см. главу 9.
Например, когда процесс открывает описатель объекта с именем \Device\ Floppy0\docs\resume.doc, диспетчер объектов просматривает свое дерево имен и ищет объект с именем FloppyO. Обнаружив, что с этим объектом сопоставлен метод parse, он вызывает его, передавая ему остаток строки с именем объекта (в данном случае — строку \docs\resume.doc). Метод parse объектов «устройство» (device objects) является процедурой ввода-вывода, которая регистрируется диспетчером ввода-вывода при определении типа объекта «устройство». Процедура parse диспетчера ввода-вывода принимает строку с именем и передает ее соответствующей файловой системе, которая ищет файл на диске и открывает его.
Подсистема ввода-вывода также использует метод security, аналогичный методу parse. Он вызывается каждый раз, когда поток пытается запросить или изменить параметры защиты файла. Эта информация для файлов отличается от таковой для других объектов, поскольку хранится в самом файле, а не в памяти. Поэтому для поиска, считывания или изменения параметров защиты нужно обращаться к подсистеме ввода-вывода.
Когда процесс создает или открывает объект по имени, он получает описатель (handle), который дает ему доступ к объекту. Ссылка на объект по описателю работает быстрее, чем по имени, так как при этом диспетчер объектов может сразу найти объект, не просматривая список имен. Процессы также могут получать описатели объектов, во-первых, путем их наследования в момент своего создания (если процесс-создатель разрешает это, указывая соответствующий флаг при вызове CreateProcess, и если описатель помечен как наследуемый либо в момент создания, либо позднее, вызовом Windows-функции SetHandleInformation), а во-вторых, за счет приема дублированного описателя от другого процесса (см. описание Windows-функции DuplicateHandle).
Чтобы потоки процесса пользовательского режима могли оперировать объектом, им нужен описатель этого объекта. Идея применения описателей для управления ресурсами сама по себе не нова. Например, стандартные библиотеки языков С, Pascal (и других) при открытии файла возвращают его описатель. Описатели служат косвенными указателями на системные ресурсы, что позволяет прикладным программам избегать прямого взаимодействия с системными структурами данных.
ПРИМЕЧАНИЕ Компоненты исполнительной системы и драйверы устройств могут обращаться к объектам напрямую, поскольку выполняются в режиме ядра и ввиду этого имеют доступ к структурам объектов в системной памяти. Однако они должны объявлять о своем использовании объектов, увеличивая значение счетчика ссылок, что гарантирует сохранность нужного объекта (см. раздел «Хранение объектов в памяти» далее в этой главе).
Читать дальшеИнтервал:
Закладка: