Марк Руссинович - 2.Внутреннее устройство Windows (гл. 5-7)
- Название:2.Внутреннее устройство Windows (гл. 5-7)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марк Руссинович - 2.Внутреннее устройство Windows (гл. 5-7) краткое содержание
Продолжение книги "Внутреннее устройство Microsoft Windows" — 5 и 7 главы.
2.Внутреннее устройство Windows (гл. 5-7) - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Контекст потока и процедура его переключения зависят от архитектуры процессора. B типичном случае переключение контекста требует сохранения и восстановления следующих данных:
•указателя команд;
•указателей на стек ядра и пользовательский стек;
•указателя на адресное пространство, в котором выполняется поток (каталог таблиц страниц процесса).
Ядро сохраняет эту информацию, заталкивая ее в текущий стек ядра, обновляя указатель стека и сохраняя его в блоке KTHREAD потока. Далее указатель стека ядра устанавливается на стек ядра нового потока и загружается контекст этого потока. Если новый поток принадлежит другому процессу, в специальный регистр процессора загружается адрес его каталога таблиц страниц, в результате чего адресное пространство этого процесса становится доступным (о трансляции адресов см. в главе 7). При наличии отложенной APC ядра запрашивается прерывание IRQL уровня 1. B ином случае управление передается загруженному для нового потока указателю команд, и выполнение этого потока возобновляется.
Если нет ни одного потока, готового к выполнению на процессоре, Windows подключает к данному процессору поток простоя (процесса Idle). Для каждого процессора создается свой поток простоя.
Разные утилиты для просмотра процессов в Windows по-разному называют процесс Idle. Диспетчер задач и Process Explorer обозначают его как «System Idle Process», Process Viewer — как «Idle», Pstat — как «Idle Process», Process Explode и Tlist — как «System Process», a Qslice — как «SystemProcess». Windows сообщает, что приоритет потока простоя равен 0. Ho на самом деле у него вообще нет уровня приоритета, поскольку он выполняется лишь в отсутствие других потоков. (Вспомните, что на нулевом уровне приоритета в Windows работает лишь поток обнуления страниц; см. главу 7.)
Холостой цикл, работающий при IRQL уровня «DPC/dispatch», просто запрашивает задания, например на доставку отложенных DPC или на поиск потоков, подлежащих диспетчеризации.
Хотя последовательность работы потока простоя зависит от архитектуры, он все равно выполняет следующие действия.
1. Включает и отключает прерывания (тем самым давая возможность доставить отложенные прерывания).
2. Проверяет, нет ли у процессора незавершенных DPC (см. главу 3). Если таковые есть, сбрасывает отложенное программное прерывание и доставляет эти DPC
3. Проверяет, выбран ли какой-нибудь поток для выполнения на данном процессоре, и, если да, организует его диспетчеризацию.
4. Вызывает из HAL процедуру обработки процессора в простое (если нужно выполнить какие-либо функции управления электропитанием).
B Windows Server 2003 поток простоя также проверяет наличие потоков, ожидающих выполнения на других процессорах, но об этом пойдет речь в разделе по планированию потоков в многопроцессорных системах.
Windows может динамически повышать значение текущего приоритета потока в одном из пяти случаев:
•после завершения операций ввода-вывода;
•по окончании ожидания на событии или семафоре исполнительной системы;
•по окончании операции ожидания потоками активного процесса;
•при пробуждении GUI-потоков из-за операций с окнами;
•если поток, готовый к выполнению, задерживается из-за нехватки процессорного времени.
Динамическое повышение приоритета предназначено для оптимизации общей пропускной способности и отзывчивости системы, а также для устранения потенциально «нечестных» сценариев планирования. Однако, как и любой другой алгоритм планирования, динамическое повышение приоритета — не панацея, и от него выигрывают не все приложения.
ПРИМЕЧАНИЕ Windows никогда не увеличивает приоритет потоков в диапазоне реального времени (16–31). Поэтому планирование таких потоков по отношению к другим всегда предсказуемо. Windows считает: тот, кто использует приоритеты реального времени, знает, что делает.
Windows временно повышает приоритет потоков по окончании определенных операций ввода-вывода, поэтому у потоков, ожидавших завершения таких операций, больше шансов немедленно возобновить выполнение и обработать полученные данные. Вспомните: после пробуждения потока оставшийся у него квант уменьшается на одну единицу, так что потоки, ожидавшие завершения ввода-вывода, не получают неоправданных преимуществ. Хотя рекомендованные приращения в результате динамического повышения приоритета определены в заголовочных файлах DDK (ищите строки «#define IO» в Wdm.h или Ntddk.h; эти же значения перечислены в таблице 6-17), реальное приращение определяется драйвером устройства. Именно драйвер устройства указывает — через функцию ядра IoCompleteRequest — на необходимость динамического повышения приоритета после выполнения запроса на ввод-вывод. Заметьте, что для запросов на ввод-вывод, адресованных устройствам, которые гарантируют меньшее время отклика, предусматриваются большие приращения приоритета.

Приоритет потока всегда повышается относительно базового, а не текущего уровня. Как показано на рис. 6-22, после динамического повышения приоритета поток в течение одного кванта выполняется с повышенным уровнем приоритета, после чего приоритет снижается на один уровень и потоку выделяется еще один квант. Этот цикл продолжается до тех пор, пока приоритет не снизится до базового. Поток с более высоким приоритетом все равно может вытеснить поток с повышенным приоритетом, но прерванный поток должен полностью отработать свой квант с повышенным приоритетом до того, как этот приоритет начнет понижаться.

Как уже отмечалось, динамическое повышение приоритета применяется только к потокам с приоритетом динамического диапазона (0-15). Независимо от приращения приоритет потока никогда не будет больше 15. Иначе говоря, если к потоку с приоритетом 14 применить динамическое повышение на 5 уровней, его приоритет возрастет лишь до 15. Если приоритет потока равен 15, он остается неизменным при любой попытке его повышения.
Когда ожидание потока на событии исполнительной системы или объекте «семафор» успешно завершается (из-за вызова SetEvent, PulseEvent или ReleaseSemaphore), его приоритет повышается на 1 уровень (см. значения EVENT_INCREMENT и SEMAPHORE_INCREMENT в заголовочных файлах DDK). Причина повышения приоритета потоков, закончивших ожидание событий или семафоров, та же, что и для потоков, ожидавших окончания операций ввода-вывода: потокам, блокируемым на событиях, процессорное время требуется реже, чем остальным. Такая регулировка позволяет равномернее распределять процессорное время.
Читать дальшеИнтервал:
Закладка: