LibKing » Книги » Компьютеры и Интернет » Прочая околокомпьтерная литература » Дмитрий Поспелов - Десять «горячих точек» в исследованиях по искусственному интеллекту

Дмитрий Поспелов - Десять «горячих точек» в исследованиях по искусственному интеллекту

Тут можно читать онлайн Дмитрий Поспелов - Десять «горячих точек» в исследованиях по искусственному интеллекту - бесплатно полную версию книги (целиком). Жанр: Прочая околокомпьтерная литература, год 1996. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
libking


Дмитрий Поспелов - Десять «горячих точек» в исследованиях по искусственному интеллекту краткое содержание

Десять «горячих точек» в исследованиях по искусственному интеллекту - описание и краткое содержание, автор Дмитрий Поспелов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Как самостоятельное научное направление искусственный интеллект (ИИ) существует чуть более четверти века. За это время отношение общества к специалистам, занимающимся подобными исследованиями, претерпело эволюцию от скепсиса к уважению. В передовых странах работы в области интеллектуальных систем поддерживаются на всех уровнях общества. Бытует устойчивое мнение, что именно эти исследования будут определять характер того информационного общества, которое уже приходит на смену индустриальной цивилизации, достигшей своей высшей точки расцвета в XX-м веке.

За прошедшие годы становления ИИ как особой научной дисциплины сформировались ее концептуальные модели, накопились специфические, принадлежащие только ей методы и приемы, устоялись некоторые фундаментальные парадигмы. Искусственный интеллект стал вполне респектабельной наукой, ничуть не менее почетной и нужной, чем физика или биология.

У специалистов старшего поколения, стоявших у колыбели зарождения новой сферы исследований, складывается убеждение, что период бурного развития кончился и теперь наступает эра вполне академических, спокойных и целенаправленных исследований, рассчитанных на длительный период.

Поэтому было бы весьма любопытно попытаться увидеть те основные направления исследований в ИИ, те «горячие точки», в которых будут сосредоточены основные усилия специалистов в конце уходящего века и начале нового тысячелетия. Анализ состояний текущих исследований позволяет выдвинуть предположение о наличии десяти таких «горячих точек. Именно они вынесены на обсуждение в данной книге.

Десять «горячих точек» в исследованиях по искусственному интеллекту - читать онлайн бесплатно полную версию (весь текст целиком)

Десять «горячих точек» в исследованиях по искусственному интеллекту - читать книгу онлайн бесплатно, автор Дмитрий Поспелов

Проблема поиска релевантной некоторому тексту информации пока остается нерешенной. В этой области пока больше вопросов, чем ответов. В ближайшие годы новые поколения ученых должны внести в решение этой проблемы свою лепту. Возможно, что появление энциклопедических баз знаний облегчит эту задачу.

5. Понимание текстов

Что значит понять текст? Ответ на этот вопрос, приемлемый в равной степени для лингвиста, психолога или философа, отсутствует. Феномен понимания во многом еще остается загадочным. В интеллектуальных системах имеется способ уточнить интерпретацию этого термина. Можно, например, считать, что система понимает введенный в нее текст, если с точки зрения некоторого человека (или группы экспертов) она правильно отвечает на все вопросы, связанные с информацией, отраженной в тексте.

Такая интерпретация связана с классификацией типов вопросов, которые, в свою очередь, определяют уровни понимания текста. На первом уровне все вопросы прямо связаны с предложенным текстом и ответы на них в явном виде содержатся в этом тексте. Если использовать вышеприведенный текст про Петю, съевшего конфеты, который был приведен выше, то вопросами первого уровня могли бы быть, например, следующие: «Куда залез Петя? или «Что сказала мать?». Вопросы второго уровня требуют специального логически получаемого расширения текста. Ибо ответы на них в явном виде в тексте отсутствует. Пример такого вопроса: «Почему конфет стало меньше?». Ответ на такой вопрос опирается на некоторую схему рассуждения. Третий уровень понимания связан с расширением текста за счет привлечения релевантных знаний. Пример такого вопроса был приведен при обсуждении соответствующей проблемы. Но возможны и более высокие уровни понимания. Например, уровни, связанные с тем, что текст понимается не буквально, а метафорически. Особым случаем понимания текста является вычленение из него прагматической составляющей, некоторого руководства к действию. Такая интерпретация процесса понимания тесно связана с задачей планирования поведения на основе текстового описания условий и целей.

6. Синтез текстов.

С проблемами поиска релевантного знания и понимания текстов весьма тесно соприкасается еще одна проблема, привлекающая сейчас внимание специалистов, работающих в ИИ. Она связана с разгадкой механизмов, лежащих в основе процедур порождения текстов на заданную тему. Без ответов на возникающие тут вопросы нельзя организовать полноценный обмен информацией между людьми и системами искусственного интеллекта. Ибо механизм генерации целенаправленного текста вместе с механизмом анализа и понимания текстов образует основу процесса коммуникации – главного процесса в организации человеческого поведения и реализации всех видов его деятельности.

Как и процесс понимания, процесс синтеза текстов имеет многоуровневую структуру. После зарождения мотивов его генерации и осознания целей, которые предполагается достигнуть в акте общения, наступает этап порождения когнитивной структуры текста. Этот этап реализуется на уровне внутренних представлений системы о мире, хранящихся в базе знаний. Знания, релевантные целям, которые направляют процесс «строительства» текста, отбираются некоторым планировщиком на знаниях и собираются во внутреннюю структуру текста. После этого на уровне лингвистической компоновки текста другой планировщик превращает эту структуру в линейный текст на естественном языке. Этот текст еще лишен того, что в психолингвистике называют читабельностью. Он еще слишком связан с машинными представлениями. Куски плохо пригнаны друг к другу, отсутствует гладкость переходов и ясность изложения целей. Эти недостатки «глубинного текста» исправляются на третьем уровне генерации, который реализуется стилистическим планировщиком.

Описанная процедура генерации ставит перед ее создателями ряд проблем, не решенных к настоящему времени. Например, неясно, какие принципы лежат в основе построения когнитивных структур текстов. В пользу того, что такие принципы существуют, убедительно свидетельствуют, например, эксперименты по генерации текстов волшебных сказок или музыкальных произведений (также текстов, но использующих специальный язык для общения с пользователями). В первом случае когнитивная структура определяется набором глубинных функций В.Я. Проппа, задающих достаточно жесткий сценарий будущего текста. Во втором случае имеется конечная система правил, делающих процедуру композиции в нужной мере формальной.

Но остаются, по крайней мере, две важные проблемы, решение которых пока не найдено: а) как цели связаны с когнитивной структурой и б) как описываются когнитивные структуры тех типов текстов, которые нужны, например, в процессе естественно-языкового диалога. Большое внимание к проблемам теории речевых актов (нового направления в лингвистике) со стороны специалистов по ИИ подогревается надеждами найти здесь ответы на поставленные вопросы.

Неменьшей проблемой является переход от нелинейной структуры текста к ее линейному представлению. Этот переход тесно связан с исследованиями по гипертекстам. Определенный бум, возникший в этой области, как раз и связан с осознанием того факта, что линейный по форме текст, как правило, является внешним кодом нелинейной структуры, на которую он «натянут». Гипертекстовые технологии призваны не только обеспечить возможность работы с нелинейным представлением текстов, но и должны как-то решать задачи его линеаризации и перехода от линейного представления к гипертекстовому.

Этот комплекс взаимосвязанных задач сейчас настолько активно изучается, что есть немалые основания считать, что в ближайшие годы проблемы синтеза текстов найдут свое разрешение.

7. Когнитивная графика

Исторически сложилось так, что системы технического зрения и машинной графики всегда находились где-то на окраине области ИИ. Как и модели распознавания образов, методы, используемые для решения возникающих здесь задач, по своей сути были мало чем похожи на те, которые традиционно использовали специалисты по искусственному интеллекту. Для классических «систем, основанных на знаниях», как часто называются экспертные и другие интеллектуальные системы, уровень сенсорных и перцептивных процессов, играющих фундаментальную роль при зрительном восприятии или восприятии речи, оказался слишком «мелким». В их базах знаний был реализован куда более «крупный» уровень ментальных представлений. И пока специалисты по использованию зрительной и акустической информации в интеллектуальных системах занимались «нижними» уровнями восприятия и генерации, остальные специалисты, работающие в области ИИ, не находили с ними общего языка.



Дмитрий Поспелов читать все книги автора по порядку

Дмитрий Поспелов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Десять «горячих точек» в исследованиях по искусственному интеллекту отзывы


Отзывы читателей о книге Десять «горячих точек» в исследованиях по искусственному интеллекту, автор: Дмитрий Поспелов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям


Прокомментировать
img img img img img