LibKing » Книги » Компьютеры и Интернет » Прочая околокомпьтерная литература » Ольга Полянская - Инфраструктуры открытых ключей

Ольга Полянская - Инфраструктуры открытых ключей

Тут можно читать онлайн Ольга Полянская - Инфраструктуры открытых ключей - бесплатно полную версию книги (целиком). Жанр: Прочая околокомпьтерная литература, издательство Интернет-университет информационных технологий - ИНТУИТ.ру, год 2007. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ольга Полянская - Инфраструктуры открытых ключей
  • Название:
    Инфраструктуры открытых ключей
  • Автор:
  • Жанр:
  • Издательство:
    Интернет-университет информационных технологий - ИНТУИТ.ру
  • Год:
    2007
  • ISBN:
    978-5-9556-0081-9
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Ольга Полянская - Инфраструктуры открытых ключей краткое содержание

Инфраструктуры открытых ключей - описание и краткое содержание, автор Ольга Полянская, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В курс включены сведения, необходимые специалистам в области информационной безопасности. Рассматривается технология инфраструктур открытых ключей (Public Key Infrastructure – PKI), которая позволяет использовать сервисы шифрования и цифровой подписи согласованно с широким кругом приложений, функционирующих в среде открытых ключей. Технология PKI считается единственной, позволяющей применять методы подтверждения цифровой идентичности при работе в открытых сетях.

Курс дает представление об основных концепциях и подходах к реализации инфраструктур открытых ключей, в нем описываются политика безопасности, архитектура, структуры данных, компоненты и сервисы PKI. Предлагается классификация стандартов и спецификаций в области инфраструктур открытых ключей. Подробно рассматриваются процессы проектирования инфраструктуры и подготовки ее к работе, обсуждаются типовые сценарии использования и способы реагирования на инциденты во время функционирования PKI.

Инфраструктуры открытых ключей - читать онлайн бесплатно полную версию (весь текст целиком)

Инфраструктуры открытых ключей - читать книгу онлайн бесплатно, автор Ольга Полянская
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Некоторые типы локальных сетей более уязвимы для атак анализатора . Особенно это касается тех, которые, как многоканальная сеть Ethernet, используют широковещательную среду. Сети, подобные коммутируемой сети Ethernet, не столь восприимчивы. Концентратор передает трафик только по проводам, соединяющим связывающиеся компьютеры. В этом случае, чтобы получить ту же самую информацию, пользователь С сталкивается с более трудной задачей: инсталлировать программу-анализатор на компьютер пользователя А .

Атаки анализаторов обнажают две серьезные проблемы аутентификации при помощи паролей . Во-первых, для аутентификации пользователь А должен передать свой пароль , разделенный секрет. Выполняя это, пользователь А может раскрыть его. Во-вторых, если разделенный секрет пользователя А используется долгое время, пользователю С достаточно получить пароль один раз, после чего он может выдавать себя за пользователя А , пока последний не изменит свой пароль . Эти слабые стороны делают атаки анализаторов успешными.

Аутентификация при помощи паролей неэффективна в среде со многими серверами [70]. Предположим, что пользователь А регулярно взаимодействует с шестью удаленными серверами. Он может использовать один и тот же пароль для каждой системы или разные пароли для всех систем. Если пользователь А использует один и тот же пароль , то успешная атака анализатора позволяет пользователю С получить доступ к учетным записям пользователя А сразу на всех серверах и в дальнейшем выдавать себя за него. Если пользователь А использует разные пароли для каждого сервера, то успешная атака анализатора позволяет пользователю С получить доступ только к одному серверу, но при этом пользователь А должен помнить шесть разных паролей . Скорее всего, пользователь А запишет свои пароли , в этом случае они могут быть похищены другим способом.

Взаимная аутентификация при помощи паролей возможна только если существует два разделенных между пользователем и сервером секрета, два пароля . В этом случае каждый пользователь должен помнить пароль сервера и также свой пароль . А сервер должен обменяться вторым разделенным секретом с каждым пользователем, причем этот секрет должен быть уникальным, чтобы ни один пользователь не мог маскироваться под сервер перед другим пользователем. Если взаимная аутентификация пользователей отсутствует, то пользователь С может получить пароль пользователя А , создав фальшивый сервер. Когда пользователи попытаются получить доступ к этому серверу, пользователь С сможет собрать их имена и пароли .

Эволюция механизмов аутентификации началась в ответ на атаки анализаторов . Очевидно, что должна была появиться защита от этих атак в виде шифрования. Шифрование предотвращает раскрытие пароля при передаче. Но если все пользователи используют один и тот же ключ шифрования, то любой из них может использовать анализатор, получить чужой пароль и расшифровать его тем же способом, что и сервер. Если каждый пользователь имеет свой ключ, то управление этими ключами обеспечивает более сильную аутентификацию, чем пароли . Следует отметить, что пользователь А защищен и в том случае, если его пароль используется однократно. Удачная атака анализатора позволяет пользователю С получить устаревший пароль А . Ясно, что пользователю А в этом случае необходим новый пароль для каждой попытки аутентификации.

Механизмы одноразовой аутентификации

Одноразовая аутентификация позволяет противостоять атаке анализатора за счет использования во время каждой попытки аутентификации нового секрета. В этом случае, если пользователь С перехватывает данные пользователя А , то не может в дальнейшем их использовать, чтобы выдавать себя за него. Рассмотрим три разных механизма одноразовой аутентификации: аутентификацию типа "запрос-ответ" , неявный запрос и аутентификацию на базе хэш-функций .

Аутентификация "запрос-ответ"

Как показано на рис. 2.2, сервер генерирует случайный запрос и отправляет его пользователю А [208]. Вместо того чтобы в ответ отправить серверу пароль , пользователь А шифрует запрос при помощи ключа, известного только ему самому и серверу. Сервер выполняет такое же шифрование и сравнивает результат с шифртекстом, полученным от пользователя А . Если они совпадают, то аутентификация прошла успешно, в противном случае - неудачно.

Этот простой механизм имеет несколько преимуществ по сравнению с простой аутентификацией при помощи паролей . Поскольку запрос генерируется случайным образом, пользователь С не может повторно использовать шифртекст, сгенерированный пользователем А , чтобы выдавать себя за него. Значение, которое отправляет пользователь А , аутентифицирует его идентичность только один раз. Имя пользователя А передается открыто, и нет причин его скрывать. Перехват информации больше не является угрозой, и пользователь А может выполнять аутентификацию на удаленном сервере в открытой сети.

Рис. 2.2. Аутентификация "запрос-ответ"

Механизм усложняется, если пользователю А необходимо пройти аутентификацию на многих серверах, в этом случае, как и при использовании паролей , пользователь А должен иметь для каждого сервера свой ключ шифрования запроса и защищенно хранить все эти ключи.

Чтобы этот механизм был пригоден для взаимной аутентификации , необходимы еще один запрос и ответ. Пользователь А может направить второй запрос вместе с зашифрованным первым запросом, а сервер - вернуть зашифрованный ответ вместе с уведомлением о корректной проверке запроса пользователя А . Таким образом, этот механизм может быть использован для взаимной аутентификации без второго разделяемого ключа шифрования запроса.

В некоторых случаях аутентификация типа "запрос-ответ" невозможна, потому что сервер не имеет средств формирования запроса к пользователю, это характерно для систем, первоначально спроектированных для применения простых паролей . Тогда необходим неявный запрос , который обычно базируется на значении текущего времени.

Неявный запрос на базе времени

Рис. 2.3иллюстрирует аутентификацию на базе времени [72]. Пользователь А шифрует значение текущего времени на часах своего компьютера и отправляет свое имя и шифртекст на сервер. Сервер расшифровывает значение, присланное пользователем А . Если оно достаточно близко к значению текущего времени на компьютерных часах сервера, то аутентификация проходит успешно, в противном случае - неудачно. Поскольку компьютерные часы пользователя А и сервера не синхронизированы и передача информации занимает некоторое время, сервер должен допускать несколько возможных значений времени.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Ольга Полянская читать все книги автора по порядку

Ольга Полянская - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Инфраструктуры открытых ключей отзывы


Отзывы читателей о книге Инфраструктуры открытых ключей, автор: Ольга Полянская. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img