Коллектив Авторов - Цифровой журнал «Компьютерра» № 203

Тут можно читать онлайн Коллектив Авторов - Цифровой журнал «Компьютерра» № 203 - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая околокомпьтерная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Коллектив Авторов - Цифровой журнал «Компьютерра» № 203 краткое содержание

Цифровой журнал «Компьютерра» № 203 - описание и краткое содержание, автор Коллектив Авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
ОглавлениеКолонка

Украина — большая Врадиевка. Выбранные места из переписки с российскими и пророссийскими друзьями Автор: Дмитрий Шабанов

Самый лучший сын самого плохого папы Автор: Сергей Голубицкий

Печальная сага о хитром байбэке Автор: Сергей Голубицкий

Перемены в интеллектуальном пейзаже Автор: Михаил Ваннах

Об уродах, единорогах и государстве, или Почему большое и общее — это всегда плохо Автор: Сергей Голубицкий

О форумных шутках, неблагонадёжности и Новой Инквизиции Автор: Сергей Голубицкий

Нейтринная астрономия выходит на промышленный уровень Автор: Дмитрий Вибе

Онлайн-гэмблинг 2013: рождение новой легенды Автор: Сергей Голубицкий

IT-рынок

Продажа воздуха в видеоиграх и тендеции рынка Автор: Андрей Васильков

Маленькое чудо Evntlive: эпитафия или новая жизнь? Автор: Сергей Голубицкий

Промзона

Биологическая обувь, которую мы будем носить в 2050 году Автор: Николай Маслухин

Электровелосипед Solar Cross работает на солнечных батарейках Автор: Николай Маслухин

Умное кольцо как конкурент умным часам Автор: Николай Маслухин

«Сфера Ниндзя»: весь дом под контролем Автор: Николай Маслухин

Технологии

Цифровой рычаг: как высокие технологии спасли и чуть не похоронили шестерых туристов в Неваде Автор: Евгений Золотов

Краткая история вирусов: к 25-летию Червя Морриса Автор: Олег Нечай

Чистые руки и грязные тарелки: кто виноват в утечках миллионов паролей и не пора ли что-то менять? Автор: Евгений Золотов

Кто ты, Сатоши? Установить личность создателя Bitcoin необходимо для выживания криптовалюты Автор: Евгений Золотов

Кто и как контролирует ваш мобильник — и чем ещё порадует Сноуден до конца года? Автор: Евгений Золотов

Цифровой журнал «Компьютерра» № 203 - читать онлайн бесплатно полную версию (весь текст целиком)

Цифровой журнал «Компьютерра» № 203 - читать книгу онлайн бесплатно, автор Коллектив Авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но, к сожалению, продолжением достоинств нейтрино являются их недостатки. Лёгкость, с которой нейтрино покидают Солнце, соответствует лёгкости, с которой они проходят через детекторы. Поэтому наблюдения нейтрино — задача непростая и недешёвая. Хотя нейтринная астрономия ведёт свою историю с 1960-х годов, вплоть до недавнего времени у неё был практически единственный объект для исследований — Солнце. Этого, правда, хватило, чтобы на длительный срок обеспокоить научное сообщество проблемой солнечных нейтрино, но всё-таки одного объекта для целой отрасли астрономии как-то маловато.

И вот теперь ситуация меняется: начались регулярные наблюдения нейтрино, рождающихся не просто вне Солнечной системы, но, возможно, вне нашей Галактики. Справедливости ради стоит отметить, что один раз, в 1987 году, внегалактические нейтрино уже наблюдались. Их источником была вспышка сверхновой 1987A в Большом Магеллановом Облаке, но то было эксклюзивное событие, впрочем, ставшее важным этапом на пути постижения как физики вспышки, так и свойств нейтрино.

Для первых регулярных наблюдений потребовался суперинструмент — нейтринный детектор объёмом в кубокилометр IceCube, установленный (точнее, закопанный) близ Южного полюса. Принцип его действия заключается в фиксации черенковского излучения, генерируемого при пролёте частиц высоких энергий через рабочее тело детектора, в качестве которого используется антарктический лёд. Устроен детектор очень просто: в толщу льда погружено 86 нитей, на каждой из которых с интервалом в 17 м нанизано по 60 фотоумножителей, самый верхний — на глубине 1 450 м, самый нижний — на глубине 2 450 м. Нити расположены в вершинах равносторонних треугольников на расстоянии 125 м друг от друга.

События, фиксируемые детектором, бывают двух видов. Мюонное нейтрино, взаимодействуя с молекулами воды, порождает мюон, который летит сквозь лёд примерно по той же траектории, что и породившее его нейтрино (событие типа «трек»). По возникающему при этом черенковскому излучению можно с высокой точностью (около половины градуса) восстановить направление прилёта нейтрино. Энергия восстанавливается хуже, потому что мюон может родиться вне детектора или, наоборот, вылететь за его пределы, растеряв часть энергии там, где его «не видят» фотоумножители. Частицы, рождающиеся при взаимодействии со льдом электронных и тау-нейтрино, разлетаются в стороны, образуя событие типа «ливень». Они способны пролететь сквозь лёд на значительно меньшее расстояние, чем мюоны, поэтому почти вся энергия родительского нейтрино остаётся и измеряется внутри детектора. За большую точность измерения энергии приходится платить погрешностями в координатах источника порядка 10–15°.

Телескоп IceCube ориентирован на поиск нейтрино высоких энергий, начиная от десятков гигаэлектронвольт. Такие нейтрино могут иметь как земное, так и внеземное происхождение. В первом случае они генерируются при взаимодействии космических лучей с земной атмосферой, во втором… Собственно говоря, IceCube отчасти и нужен, чтобы разгадать их происхождение во втором случае. Проблема состоит в том, что IceCube непосредственно регистрирует не мюоны и не нейтрино, а свет. И у него, как у любого телескопа, есть паразитная засветка. Основной вклад в сигнал дают атмосферные мюоны, рождающиеся при проникновении частиц космических лучей в воздушную оболочку Земли. Их IceCube регистрирует примерно 10 11штук в год, но они относительно легко отфильтровываются, поскольку летят преимущественно сверху. Далее по численности идут атмосферные нейтрино, также рождающиеся при взаимодействии космических лучей и атмосферы и регистрируемые примерно каждые шесть минут. Их отфильтровать уже сложнее, так как они летят со всех сторон и, вообще говоря, не отличаются от астрофизических нейтрино.

Однако количество атмосферных нейтрино сильно падает с увеличением энергии: частиц с энергией больше 100 ТэВ среди них почти нет. Поэтому, если детектор фиксирует нейтрино большей энергии, это, скорее всего, частица внеземного происхождения. Не удивительно, что первая паранайденных астрофизических нейтрино имела энергии значительно выше этого предела, а именно порядка 1 ПэВ. Более тщательный анализсобранных за два года данных позволил выделить ещё 26 подозрительных событий, то есть вспышек света, выдающих проникновение в детектор нейтрино с энергиями от 30 ТэВ и выше. Статистические оценки показывают, что из этих 28 частиц к атмосферным нейтрино могут относиться около 10, так что б о льшая их часть родилась вне Земли.

Из 28 событий только семь оказались треками, поэтому координаты источников известны с не очень высокой точностью. Приблизительное их расположение указывает на некоторую концентрацию к галактическому центру, однако в статьеуказано, что это сгущение статистически незначимо. В направлениях прихода нейтрино также нет связи с галактической плоскостью. Отсутствие концентрации к Млечному Пути считается указанием на внегалактическую природу, однако и корреляции с активными ядрами галактик и гамма-всплесками (потенциальными источниками частиц высоких энергий) зарегистрированные нейтрино также не обнаруживают. Тем не менее косвенные данные говорят о том, что их источники находятся вне нашей Галактики.

Конечно, было бы странно ожидать каких-то откровений от первых трёх десятков частиц. Здесь скорее важно другое: нейтринная астрономия вышла на уровень регулярных наблюдений всего неба, то есть перестала быть астрономией одного объекта. Следующий шаг в её развитии — создание других обсерваторий, которые масштабом были бы сравнимы с IceCube. Приоритет в нейтринной астрономии пока держит Южное полушарие, но Северное не собирается отставать. Правда, в наших широтах нет таких мощных залежей льда, но, как показывает опыт, нейтринный телескоп можно устроить и в воде. Таковы, например, уже действующий телескоп чего-нибудь ANTARESи планируемая обсерватория KM3NeT. Есть планы по созданию детектора объёмом в 1 км 3на базе Байкальского нейтринного телескопа. В октябре 2013 года представители четырёх нейтринных коллабораций — Байкальской, ANTARES, IceCube и KM3NeT — договорились о более тесном сотрудничестве в рамках Глобальной нейтринной сети, которая должна стать первым шагом к Глобальной нейтринной обсерватории. Кроме того, уже сейчас действуют совместные системы нейтринных и оптических наблюдений, чтобы можно было оперативно посмотреть в направлении прилёта нейтрино высокой энергии, нет ли там интересного. Пока интересного ничего не было, но ведь история нейтринной астрономии только начинается.

К оглавлению

Онлайн-гэмблинг 2013: рождение новой легенды

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив Авторов читать все книги автора по порядку

Коллектив Авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Цифровой журнал «Компьютерра» № 203 отзывы


Отзывы читателей о книге Цифровой журнал «Компьютерра» № 203, автор: Коллектив Авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x