Брюс Шнайер - Секреты и ложь. Безопасность данных в цифровом мире

Тут можно читать онлайн Брюс Шнайер - Секреты и ложь. Безопасность данных в цифровом мире - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая околокомпьтерная литература, издательство Питер, год 2003. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Брюс Шнайер - Секреты и ложь. Безопасность данных в цифровом мире краткое содержание

Секреты и ложь. Безопасность данных в цифровом мире - описание и краткое содержание, автор Брюс Шнайер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В этой книге Брюс Шнайер – автор нескольких бестселлеров и признанный специалист в области безопасности и защиты информации, опираясь на собственный опыт, разрушает заблуждения многих, уверенных в конфиденциальности и неприкосновенности информации. Он разъясняет читателям, почему так сложно предотвратить доступ третьих лиц к личной цифровой информации, что нужно знать, чтобы обеспечить ее защиту, сколько средств следует выделять на обеспечение корпоративной безопасности и многое, многое другое.

Секреты и ложь. Безопасность данных в цифровом мире - читать онлайн бесплатно полную версию (весь текст целиком)

Секреты и ложь. Безопасность данных в цифровом мире - читать книгу онлайн бесплатно, автор Брюс Шнайер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как и шифрование с открытым ключом, цифровые подписи используют пару ключей: открытый и закрытый. Вы также не можете установить по одному ключу другой. Но в этом случае ключи меняются местами.

У Алисы есть открытый текст сообщения. Применяя свой закрытый ключ, она сообщение зашифровывает. Поскольку это ее личный ключ, то только им можно зашифровать сообщение абсолютно тем же способом. Таким образом, зашифрованное сообщение становится Алисиной подписью на сообщении. Открытый ключ Алисы общедоступен. Кто угодно способен достать этот ключ и расшифровать сообщение, удостоверившись таким образом, что его подписала (то есть зашифровала) Алиса. Подпись является функцией сообщения, поэтому она уникальна для сообщений: злостный фальсификатор не может снять подпись Алисы с одного документа и поместить ее на другой. Подпись – это функция личного ключа Алисы, то есть она уникальна для нее.

Конечно, реальные системы более сложны. Так же как Алиса не зашифровывает сами сообщения при помощи алгоритмов шифрования с открытым ключом (она зашифровывает только ключ сообщения), она и не подписывает непосредственно сообщение. Вместо этого она вычисляет одностороннюю хэш-функцию сообщения и затем ее подписывает. Опять же, подписывание хэш-значения на несколько порядков быстрее, и надо иметь в виду, что существует математическая проблема защиты при подписывании сообщений напрямую.

Таким образом, большинство алгоритмов цифровых подписей на самом деле не зашифровывают подписанные сообщения. Идея та же, но математическое исполнение отличается. Для того чтобы создать подпись, Алиса производит некоторые вычисления исходя из сообщения и своего личного ключа. Эта подпись прикрепляется к сообщению. Боб проделывает другие вычисления, основываясь на сообщении, подписи и открытом ключе Алисы, чтобы проверить подпись. Ева, которая не знает личного ключа Алисы, может проверить подпись, но не может подделать сообщение или полноценную подпись.

В настоящее время применяются несколько алгоритмов цифровой подписи. Наиболее популярен RSA. Алгоритм цифровой подписи американского правительства (Digital Signature Algorithm, DSA), который применяют в стандарте цифровой подписи (Digital Signature Standard, DSS), также используется часто. Вы можете иногда встретить алгоритм Эль-Гамаль. А еще существуют алгоритмы подписей, в основе которых лежит криптография эллиптических кривых; они похожи на все прочие, но в некоторых ситуациях работают эффективнее.

Хотя алгоритмы цифровой подписи с открытым ключом похожи на MAC, они лучше в одном важном нюансе. Используя MAC, Алиса и Боб применяют совместный секретный ключ для аутентификации сообщений. Если Алиса получит сообщение и проверит его, она будет знать, что сообщение пришло от Боба.

Но она не сможет доказать это правосудию. В чем можно его убедить – это в том, что письмо пришло или от Боба, или от Алисы: как-никак оба они знали ключ MAC. При помощи MAC можно убедить получателя, что письмо поступило от отправителя, но MAC нельзя использовать для убеждения третьей стороны. Цифровые подписи позволяют уверить третью сторону, решающую проблему отказа от подписи: Алиса не может отправить Бобу письмо, а позднее утверждать, что никогда его не посылала.

К несчастью, действительность такова, что все, что касается подписей, является черным или белым, как это предполагает математика. Законы о цифровых подписях существуют в законодательстве многих стран, но меня беспокоит, что они не жизнеспособны. Цифровые подписи не являются аналогом автографа (собственноручной подписи). Я расскажу об этом подробнее в главе 15.

Генераторы случайных чисел

Случайные числа – это простой элемент криптографии, о котором меньше всего говорят, но он важен не менее, чем остальные. Почти всем системам компьютерной безопасности, в которых применяется криптография, необходимы случайные числа – для ключей, уникальных чисел в протоколах и т. п. – и безопасность таких систем часто зависит от произвольности ее случайных чисел. Если генератор случайных чисел ненадежен, вся система выходит из строя.

В зависимости от того, с кем вы разговариваете, генерация случайных чисел выглядит или тривиальной, или невозможной. Теоретически это невозможно. Джон фон Нейман, отец вычислительной техники, сказал: «Любой, кто считает, что существуют арифметические методы получения случайных цифр, безусловно, грешит». Он имел в виду, что невозможно получить что-то случайное в полном смысле слова на выходе такого детерминированного зверя, как компьютер. Это правда, но, к счастью, кое-что сделать мы можем. От генератора случайных чисел нам необходимо не то, чтобы числа были действительно случайными, а чтобы их невозможно было предсказать и воспроизвести. Если у нас будут выполнены эти два условия, мы сможем достичь безопасности.

С другой стороны, если мы нарушаем эти два условия, безопасности нет. В 1994 году в казино Монреаля установили компьютерный генератор случайных чисел для лотерей. Один наблюдательный игрок, проводивший в казино очень много времени, заметил, что выигрышные номера были каждый день одни и те же. Он успешно сорвал три Джек-Пота подряд и получил 600 000 долларов. (Как следует позаламывав руки, поскрежетав зубами и расследовав все, казино заплатило выигрыш.)

Существует несколько обширных классов генераторов случайных чисел. В основе некоторых из них лежат физические процессы, которые можно считать довольно случайными. Агентство национальной безопасности любит использовать в своей аппаратуре для создания случайных чисел электрические шумы диодов. Другие возможности – счетчик Гейгера или приемники радиопомех. Одна система в Интернете использует цифровой фотоаппарат, направленный на несколько стробоскопов. В других системах применяется турбулентность воздуха в дисководах или момент поступления сетевых пакетов.

Некоторые генераторы случайных чисел отслеживают случайные движения пользователя. Программа может попросить пользователя набрать на клавиатуре большую строку произвольных символов; она может задействовать последовательность символов или даже время между нажатиями клавиш для создания случайных чисел. Другая программа запросто способна потребовать у пользователя туда-сюда подвигать мышью или похрюкать в микрофон.

Некоторые генераторы случайных чисел применяют эту введенную информацию без изменений. В других она служит затравкой (начальным числом) для математических генераторов случайных чисел. Этот прием работает лучше, если системе требуется случайных чисел больше, чем их обеспечивает ввод информации.

Какого бы происхождения ни была случайность, генератор создаст ряд случайных битов. Затем их можно использовать как криптографические ключи и для всего остального, что нужно системе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Брюс Шнайер читать все книги автора по порядку

Брюс Шнайер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Секреты и ложь. Безопасность данных в цифровом мире отзывы


Отзывы читателей о книге Секреты и ложь. Безопасность данных в цифровом мире, автор: Брюс Шнайер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x