Олег Деревенец - Песни о Паскале
- Название:Песни о Паскале
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Олег Деревенец - Песни о Паскале краткое содержание
Песни о Паскале - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
{$R- – отключить проверку диапазонов }
var N : byte;
begin
N:= 0; { 0 – минимальное значение для байта }
N:= N-1;
Writeln(N); Readln;
end.
Результат ещё удивительней: теперь программа напечатает число 255! То есть, удалив из пустой чаши несуществующую каплю, мы наполнили её доверху! Этот фокус называют антипереполнением, то есть переполнением наоборот.
Проделав опыты с переменными других числовых типов, вы убедитесь, что переполнение и антипереполнение может постигнуть любую из них. Так, добавление единицы к положительному числу 32767 в переменной типа INTEGER дает отрицательный результат -32768. Отсюда следует общее правило: добавление единицы к максимальному значению для числового типа дает минимальное значение. И наоборот: вычитание единицы из минимального значения дает максимальное. Рис. 75 наглядно показывает это.

Такая вот чудная арифметика! Причина переполнений и антипереполнений кроется в устройстве регистров процессора, — в свое время мы узнаем о них больше при изучении двоичной системы счисления. Или вспомните одометр — прибор для подсчёта пробега автомобиля: по достижении предельного количества километров (99999) одометр сбрасывается в ноль.
Сейчас важно понять, что присвоение переменной некоторого выражения не гарантирует правильного результата, – он будет верным лишь при отсутствии переполнений и антипереполнений. Когда в вычислении участвуют переменные разных типов, оно выполняется в самом емком формате, то есть в Longint, а затем результат «обрубается» в соответствии с типом принимающей переменной, например:
{ $R- }
var B: Byte; S: ShortInt; W: Word; N: Integer;
...
N:= B + S + W;
Здесь даже при положительных значениях всех суммируемых операндов, результат в переменной N может оказаться отрицательным! Если вам не по нраву такое поведение программы, включайте директиву проверки диапазонов $R+.
Угадайте, что чаще всего делают с целыми переменными? — прибавляют и вычитают единицу. Потому в процессорах стараются ускорить эти операции. Паскаль не обошел вниманием эту особенность программ, и предлагает вам две процедуры, объявленные так:
procedure Inc (var N : longint); { прибавление единицы к переменной N }
procedure Dec (var N : longint); { вычитание единицы из переменной N }
Хотя параметр N в процедурах объявлен как LONGINT, в действительности здесь может стоять переменная любого порядкового типа: INTEGER, WORD, BYTE, CHAR и даже BOOLEAN.
var B: byte; N: integer; C: char;
...
Inc(B); { B:= B+1 }
Dec(N); { N:= N–1 }
C:= ‘A‘; Inc(C); { ‘B‘}
Процедуры инкремента и декремента – так их называют – выполняются быстрее операторов присваивания N:=N+1 и N:=N-1.
Работающим в IDE Borland Pascal, следует учесть, что здесь процедуры инкремента и декремента не подвластны директиве $R+ (в отличие от сложения и вычитания). То есть, переполнения и антипереполнения не вызывают аварий.
Контроль переполнений директивой $R+ повышает надежность программ. Но порой нужны более сильные ограничения. Предположим, некая переменная M по смыслу является порядковым номером месяца в году. Стало быть, её значения должны быть ограничены диапазоном от 1 до 12. Программист может указать это компилятору, объявив переменную как диапазон, и явно задав допустимые пределы её изменения:
var M : 1..12;
Диапазон выражается двумя константами: минимальным и максимальным значениями, разделенными двумя точками. Теперь, при включенной директиве $R+, будет выдано сообщение об ошибке при попытке присвоить этой переменной любое значение за пределами 1…12. Во всем прочем диапазон – это обычный целочисленный тип (в данном случае – однобайтовый).
Рассмотрим ещё пример.
var M : 1..12; { месяцы }
D : 1..7; { дни недели }
…
M:= D; { здесь возможна смысловая ошибка }
Здесь объявлены две переменные: M – номер месяца в году, и D – номер дня недели. Это сделано через диапазоны, что гарантирует соблюдение границ. Но ничто не мешает нам присвоить месяцу значение дня, – ведь это не нарушит установленных пределов. Другое дело – смысл. Есть ли смысл в таком присваивании, или налицо ошибка программиста? Вероятней всего – последнее. Выявить ошибки такого рода помогает ещё один тип данных – перечисление.
Перечислением программист дает имена всем возможным значениям переменных, эти имена перечисляются внутри круглых скобок. Например, переменные M1 и M2 могут быть объявлены через сокращенные названия месяцев, а переменные D1 и D2 – через сокращенные названия дней недели.
var M1, M2 : (Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dcb);
D1, D2 : (Mond, Tues, Wedn, Thur, Frid, Satu, Sund);
Теперь компилятор разрешит присваивать переменным только объявленные значения, например:
M1:= Apr; { допустимо }
M1:= M2; { допустимо }
M1:= 3; { ошибка }
M1:= Jan+2; { ошибка }
D2:= M1; { ошибка }
Кстати, один из перечислимых типов вам знаком – это булев тип. Объявление булевой переменной равнозначно объявлению перечисления.
var B : ( FALSE, TRUE ); { равнозначно B : Boolean; }
Имена в перечислениях – это не строковые константы. Поэтому имя Jan и строка «Jan» совсем не одно и то же. Иначе говоря, оператор Write(M1) не напечатает вам название месяца, который содержится в переменной M1. Вы спросите, а как же печать булевых данных? Ведь они печатаются как «TRUE» и «FALSE». Да, но это единственное исключение.
Итак, вы познакомились с пятью числовыми типами данных, диапазонами и перечислениями. Вместе с булевым и символьным типами они составляют семейство порядковых типов данных, а значит, имеют общие свойства и области применения. Рассмотрим их.
Определение порядкового номера
Название «порядковый» говорит о том, что значения этих типов данных упорядочены относительно друг друга. С числами все ясно, – здесь порядок очевиден. А символы? Если вспомнить алфавит и таблицу кодировки символов, вопрос отпадет.
Хорошо, а как насчет перечислений и булевого типа? Оказывается, в памяти компьютера они тоже хранятся как числа. Например, упомянутое выше перечисление месяцев в памяти компьютера кодируется числами 0, 1, 2 и так далее, то есть как числовой диапазон 0..11. Таким образом, значение Jan соответствует нулю, Feb – единице и так далее. Подобным образом кодируются и булевы данные: FALSE – нулем, а TRUE – единицей.
Читать дальшеИнтервал:
Закладка: