Джон Келлехер - Наука о данных. Базовый курс

Тут можно читать онлайн Джон Келлехер - Наука о данных. Базовый курс - бесплатно ознакомительный отрывок. Жанр: comp-db, издательство Альпина Паблишер, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Наука о данных. Базовый курс
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    978-5-9614-3378-4
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Джон Келлехер - Наука о данных. Базовый курс краткое содержание

Наука о данных. Базовый курс - описание и краткое содержание, автор Джон Келлехер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Сегодня наука о данных используется практически во всех сферах: вы видите подобранные специально для вас рекламные объявления, рекомендованные на основе ваших предпочтений фильмы и книги, ссылки на предполагаемых друзей в соцсетях, отфильтрованные письма в папке со спамом.
Книга знакомит с основами науки о данных. В ней охватываются все ключевые аспекты, начиная с истории развития сбора и анализа данных и заканчивая этическими проблемами, связанными с конфиденциальностью информации. Авторы объясняют, как работают нейронные сети и машинное обучение, приводят примеры анализа бизнес-проблем и того, как их можно решить, рассказывают о сферах, на которые наука о данных окажет наибольшее влияние в будущем.
«Наука о данных» уже переведена на японский, корейский и китайский языки.

Наука о данных. Базовый курс - читать онлайн бесплатно ознакомительный отрывок

Наука о данных. Базовый курс - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джон Келлехер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

База данных (Database)

Центральное хранилище данных. Наиболее распространена реляционная структура базы данных, которая хранит данные в таблицах, где каждая строка отведена одному объекту, а каждый столбец — одному атрибуту. Это представление идеально подходит для хранения данных с четкой структурой, которые могут быть разложены на базовые атрибуты.

Большие данные (Big Data)

Большие данные часто определяют как «3V»: экстремальный объем ( Volume), разнообразие типов ( Variety) и скорость обработки данных ( Velocity).

Высокопроизводительные вычисления (High Performance Computing, или HPC)

Нацелены на разработку и реализацию моделей для объединения большого количества компьютеров в кластер, способный эффективно хранить и обрабатывать большие объемы данных.

Выхлопные данные (Exhaust Data)

Данные, являющиеся побочным продуктом процесса, основной целью которого является нечто иное, чем сбор данных. Например, для каждого перепоста, ретвита или лайка в соцсетях создается ряд «выхлопных данных»: кто поделился, кто просмотрел, какое устройство использовалось, какое время суток и т. д. (В отличие от намеренно собранных данных.)

Выявление аномалий (Anomaly Detection)

Включает поиск и идентификацию экземпляров данных, которые являются нетипичными в наборе. Эти отклонения часто называют аномалиями или выбросами. Часто применяется при анализе финансовых транзакций для обнаружения потенциальных мошеннических действий и запуска расследований.

Глубинный анализ данных (Data Mining)

Процесс выявления в наборах данных полезных закономерностей для решения конкретной проблемы. CRISP-DM определяет стандартный жизненный цикл проекта глубинного анализа данных. Тесно связан с наукой о данных, но охватывает меньший круг задач.

Глубокое обучение (Deep Learning)

Модель глубокого обучения — это нейронная сеть, которая имеет несколько (больше двух) слоев скрытых элементов (или нейронов). Глубокие сети являются глубокими именно в смысле количества слоев нейронов. Сегодня большинство глубоких сетей имеют от 10 до 100 слоев. Сила глубокого обучения состоит в том, что на более поздних уровнях нейроны способны изучать производные атрибуты, составляя их из атрибутов, изученных нейронами на более ранних уровнях.

Данные (Data)

В самом общем смысле данные — это набор характеристик (или измерение) некоей реальной сущности (человека, объекта или события).

Дерево решений (Decision Tree)

Тип модели прогнозирования, которая кодирует правила условного оператора (если — тогда — иначе) в древовидной структуре. Каждый узел дерева определяет один атрибут для тестирования, и объект должен пройти путь от корневого узла до конечного, чтобы метка конечного узла в дальнейшем могла быть предсказана для этого объекта.

Интернет вещей (Internet of Things, IoT)

Межсетевой обмен информацией между физическими устройствами и датчиками. Включает в себя область разработки «машина — машина» (м2 м) по созданию систем, которые не только позволяют машинам обмениваться информацией, но и реагировать на нее, инициируя действия без участия человека.

Классификация (Classification)

Задача прогнозирования значения целевого атрибута объекта на основе набора значений входных атрибутов, где целевой атрибут отражает номинальный или порядковый тип данных.

Кластеризация (Clustering)

Выявление групп схожих объектов в наборе данных.

Обучение с учителем (Supervised Learning)

Форма машинного обучения, целью которой является изучение функции, отображаемой набором значений входных атрибутов объекта для вычисления отсутствующего значения целевого атрибута того же объекта.

Корреляция (Correlation)

Описывает силу, связывающую атрибуты.

Линейная регрессия (Linear Regression)

Когда в регрессионном анализе предполагается линейная зависимость, анализ называется линейной регрессией. Этот термин часто используется для описания моделей прогнозирования машинного обучения, которые применяют этот вид анализа для вычисления значения числового целевого атрибута.

Машинное обучение (Machine Learning)

Область компьютерных исследований, которая фокусируется на разработке и оценке алгоритмов, способных выявлять полезные закономерности в наборах данных. Алгоритм машинного обучения принимает на вход набор данных и возвращает модель, которая кодирует закономерности, выявленные алгоритмом.

Машинное обучение в базе данных (In-Database Machine Learning)

Использование алгоритмов машинного обучения, встроенных в решение для базы данных. Преимущество машинного обучения в базе данных состоит в том, что оно сокращает время, затрачиваемое на перемещение данных для анализа.

Метаданные (Metadata)

Данные, описывающие структуры и свойства других данных, например, временна́я метка, которая содержит информацию о том, когда фрагмент данных был собран. Метаданные являются одним из наиболее распространенных типов данных о выбросах.

Набор данных (Dataset)

Совокупность данных, относящихся к набору объектов, каждый из которых описан в терминах набора атрибутов. В своей основной форме набор данных организован в виде матрицы n × m , где n — количество объектов (строк), а m — количество атрибутов (столбцов).

Наука о данных (Data Science)

Развивающаяся область знаний, которая использует набор алгоритмов, процессов и методов постановки проблемы для анализа больших данных с целью извлечь из них полезную информацию. Тесно связана с глубинным анализом данных, но имеет более широкую сферу применения и круг проблем. Занимается анализом как структурированных, так и неструктурированных больших данных и базируется на принципах целого ряда научных отраслей, включая машинное обучение, статистику, высокопроизводительные вычисления, а также этические вопросы использования данных и их регулирование.

Нейрон (Neuron)

Нейрон принимает на вход несколько значений (или активаций) и отображает их в качестве выходного сигнала. Это отображение обычно обеспечивается функцией линейной регрессии, примененной к входным данным, и последующим выводом результата этой функции через нелинейные функции активации, такие как логистическая функция или функция TANH.

Нейронная сеть (Neural Network)

Тип модели машинного обучения, которая реализована в виде сети процессорных блоков, называемых нейронами. Можно создавать различные типы нейронных сетей, изменяя в них топологию нейронов. Наиболее часто встречаются полностью подключенные нейронные сети с прямой связью, которые обучают методом обратного распространения ошибки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джон Келлехер читать все книги автора по порядку

Джон Келлехер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наука о данных. Базовый курс отзывы


Отзывы читателей о книге Наука о данных. Базовый курс, автор: Джон Келлехер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x