Джон Келлехер - Наука о данных. Базовый курс

Тут можно читать онлайн Джон Келлехер - Наука о данных. Базовый курс - бесплатно ознакомительный отрывок. Жанр: comp-db, издательство Альпина Паблишер, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Наука о данных. Базовый курс
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    978-5-9614-3378-4
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Джон Келлехер - Наука о данных. Базовый курс краткое содержание

Наука о данных. Базовый курс - описание и краткое содержание, автор Джон Келлехер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Сегодня наука о данных используется практически во всех сферах: вы видите подобранные специально для вас рекламные объявления, рекомендованные на основе ваших предпочтений фильмы и книги, ссылки на предполагаемых друзей в соцсетях, отфильтрованные письма в папке со спамом.
Книга знакомит с основами науки о данных. В ней охватываются все ключевые аспекты, начиная с истории развития сбора и анализа данных и заканчивая этическими проблемами, связанными с конфиденциальностью информации. Авторы объясняют, как работают нейронные сети и машинное обучение, приводят примеры анализа бизнес-проблем и того, как их можно решить, рассказывают о сферах, на которые наука о данных окажет наибольшее влияние в будущем.
«Наука о данных» уже переведена на японский, корейский и китайский языки.

Наука о данных. Базовый курс - читать онлайн бесплатно ознакомительный отрывок

Наука о данных. Базовый курс - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джон Келлехер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Джон Келлехер Брендан Тирни Наука о данных Базовый курс Переводчик Михаил - фото 1

Джон Келлехер, Брендан Тирни

Наука о данных. Базовый курс

Переводчик Михаил Белоголовский

Научный редактор Заур Мамедьяров

Главный редактор С. Турко

Руководитель проекта А. Василенко

Корректоры Е. Аксенова, Т. Редькина

Компьютерная верстка А. Абрамов

Художественное оформление и макет Ю. Буга

Иллюстрация на обложке shutterstock.com

Права на публикацию на русском языке получены при содействии Агентства Александра Корженевского (Москва).

© 2018 Massachusetts Institute of Technology

© Издание на русском языке, перевод, оформление. ООО «Альпина Паблишер», 2020

© Электронное издание. ООО «Альпина Диджитал», 2020

* * *

Предисловие

Цель науки о данных — улучшить процесс принятия решений, основывая их на более глубоком понимании ситуации с помощью анализа больших наборов данных. Как область деятельности наука о данных включает в себя ряд принципов, методов постановки задач, алгоритмов и процессов для выявления скрытых полезных закономерностей в больших наборах данных. Она тесно связана с глубинным анализом данных и машинным обучением, но имеет более широкий охват. Сегодня наука о данных управляет принятием решений практически во всех сферах современного общества. В повседневной жизни вы ощущаете на себе воздействие науки о данных, когда видите отобранные специально для вас рекламные объявления, рекомендованные фильмы и книги, ссылки на предполагаемых друзей, отфильтрованные письма в папке со спамом, персональные предложения от мобильных операторов и страховых компаний. Она влияет на порядок переключения и длительность сигналов светофоров в вашем районе, на то, как были созданы новые лекарства, продающиеся в аптеке, и то, как полиция вычисляет, где может потребоваться ее присутствие.

Рост использования науки о данных в обществе обусловлен появлением больших данных и социальных сетей, увеличением вычислительной мощности, уменьшением размеров носителей компьютерной памяти и разработкой более эффективных методов анализа и моделирования данных, таких как глубокое обучение. Вместе эти факторы означают, что сейчас процесс сбора, хранения и обработки данных стал как никогда ранее доступен для организаций. В то же время эти технические новшества и растущее применение науки о данных означают, что этические проблемы, связанные с использованием данных и личной конфиденциальностью, тоже вышли на первый план. Цель этой книги — познакомить с наукой о данных на уровне ее основных элементов и с той степенью погружения, которая обеспечит принципиальное понимание вопроса.

Глава 1 очерчивает область науки о данных и дает краткую историю ее становления и эволюции. В ней мы также рассмотрим, почему наука о данных стала такой востребованной сегодня, и перечислим факторы, стимулирующие ее внедрение. В конце главы мы развенчаем несколько мифов, связанных с темой книги. Глава 2 вводит фундаментальные понятия, относящиеся к данным. В ней также описаны стандартные этапы проекта: понимание бизнес-целей, начальное изучение данных, подготовка данных, моделирование, оценка и внедрение. Глава 3 посвящена инфраструктуре данных и проблемам, связанным с большими данными и их интеграцией из нескольких источников. Одна из таких типичных проблем заключается в том, что данные в базах и хранилищах находятся на одних серверах, а анализируются на других. Поэтому колоссальное время тратится на перемещение больших наборов данных между этими серверами. Глава 3 начинается с описания типичной инфраструктуры науки о данных для организации и некоторых свежих решений проблемы перемещения больших наборов данных, а именно: метода машинного обучения в базе данных, использования Hadoop для хранения и обработки данных, а также разработки гибридных систем, в которых органично сочетаются традиционное программное обеспечение баз данных и решения, подобные Hadoop. Глава завершается описанием проблем, связанных с интеграцией данных в единое представление для последующего машинного обучения. Глава 4 знакомит читателя с машинным обучением и объясняет некоторые из наиболее популярных алгоритмов и моделей, включая нейронные сети, глубокое обучение и деревья решений. В главе 5 основное внимание уделяется использованию опыта в области машинного обучения для решения реальных задач, приводятся примеры анализа стандартных бизнес-проблем и того, как они могут быть решены с помощью машинного обучения. В главе 6 рассматриваются этические вопросы науки о данных, последние разработки в области регулирования и некоторые из новых вычислительных методов защиты конфиденциальности в процессе обработки данных. Наконец, в главе 7 описаны сферы, на которые наука о данных окажет наибольшее влияние в ближайшем будущем, изложены принципы, позволяющие определить, будет ли данный конкретный проект успешным.

Благодарности

Джон хотел бы поблагодарить свою семью и друзей за их содействие и поддержку в процессе подготовки этой книги и посвящает ее своему отцу Джону Бернарду Келлехеру в знак признания его любви и дружбы.

Брендан хотел бы поблагодарить Грейс, Дэниела и Элеонору за их постоянную поддержку при написании всех его книг (эта уже четвертая), что позволило совмещать работу и путешествия.

Глава 1. Что такое наука о данных?

Наука о данных включает в себя набор принципов, методов постановки задач, алгоритмов и процессов для выявления скрытых полезных закономерностей в больших данных. Многие элементы этой науки были разработаны в смежных областях, таких как машинное обучение и глубинный анализ данных. Фактически термины «наука о данных», «машинное обучение» и «глубинный анализ данных» часто используются взаимозаменяемо. Эти дисциплины объединяет то, что все они направлены на улучшение процесса принятия решений посредством анализа данных. Однако, хотя наука о данных заимствует методы перечисленных областей, она имеет более широкий охват. Машинное обучение фокусируется на разработке и оценке алгоритмов выявления закономерностей в данных. Глубинный анализ данных, как правило, предполагает анализ структурированных данных и часто подразумевает акцент на коммерческих приложениях. Наука о данных учитывает и то и другое, при этом охватывает и другие проблемы: очистку и преобразование неструктурированных веб-данных и информации из социальных сетей, хранение и обработку больших неструктурированных наборов данных и вопросы, связанные с этикой и регулированием.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джон Келлехер читать все книги автора по порядку

Джон Келлехер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наука о данных. Базовый курс отзывы


Отзывы читателей о книге Наука о данных. Базовый курс, автор: Джон Келлехер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x