Сидни Фейт - TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security)
- Название:TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security)
- Автор:
- Жанр:
- Издательство:Лори
- Год:2000
- Город:Москва
- ISBN:5-85582-072-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сидни Фейт - TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) краткое содержание
Второе издание популярного справочника полностью переработано и расширено с целью предоставить читателю наиболее полное описание средств разработки, конфигурирования, использования и обслуживания сетей TCP/IP и соответствующих служб.
Книга написана увлекательно и доступно. Она содержит дополнительные материалы о нескольких протоколах Интернета, используемых серверами и браузерами WWW, а также рассматривает все последние изменения в этой области. В книгу включены главы о новом стандарте безопасности IP и протоколе IP следующего поколения, известном как IPng или IPv6. Рисунки и таблицы наглядно показывают влияние средств безопасности IP и IPng на существующие сетевые среды.
Издание содержит следующие дополнительные разделы:
• Безопасность IP и IPv6
• Описание средств WWW, новостей Интернета и приложений для работы с gopher
• Подробное описание серверов имен доменов (DNS), маски подсети и бесклассовой маршрутизации в Интернете
• Таблицы и протоколы маршрутизации
• Руководство по реализации средств безопасности для каждого из протоколов и приложений
• Примеры диалогов с новыми графическими инструментами
Новое издание бестселлера по TCP/IP станет незаменимым помощником для разработчиков сетей и приложений, для сетевых администраторов и конечных пользователей.
TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Приемная сторона должна обеспечить достаточное буферное пространство, позволяющее отправителю выполнять пересылку данных без пауз в работе. Это особенно важно для сетей с большими задержками, в которых между отправкой данных и получением ACK (а также при согласовании размера окна) проходит большой интервал времени. Для поддержания устойчивого потока данных от источника принимающая сторона должна иметь окно размером не менее чем произведение полосы пропускания на задержку.
Например, если источник может отсылать данные со скоростью 10 000 байт/с, а на возврат ACK тратится 2 с, то на другой стороне нужно обеспечить приемное окно размером не менее 20 000 байт, иначе поток данных не будет непрерывным. Приемный буфер в 10 000 байт вполовину снизит пропускную способность.
Еще одним важным фактором для производительности является способность хоста реагировать на высокоприоритетные события и быстро выполнять контекстное переключение , т.е. завершать одни операции и переключаться на другие. Хост может интерактивно поддерживать множество локальных пользователей, пакетные фоновые процессы и десятки одновременных коммуникационных соединений. Контекстное переключение позволяет обслуживать все эти операции, скрывая нагрузки на систему. Реализации, в которых проведена интеграция TCP/IP с ядром операционной системы, могут существенно снизить нагрузки от использования контекстного переключения.
Ресурсы центрального процессора компьютера необходимы для операций по обработке заголовков TCP. Если процессор не может быстро вычислять контрольные суммы, это приводит к снижению скорости пересылки данных по сети.
Кроме того, разработчикам следует обращать внимание на упрощение конфигурирования параметров TCP, чтобы сетевой администратор мог настроить их в соответствии со своими локальными требованиями. Например, возможность настройки размера буфера на полосу пропускания и задержку сети существенно улучшит производительность. К сожалению, многие реализации не уделяют этому вопросу должного внимания и жестко программируют коммуникационные параметры.
Предположим, что сетевое окружение совершенно: имеются достаточные ресурсы и контекстное переключение выполняется быстрее, чем ковбои выхватывают свои револьверы. Будет ли получена прекрасная производительность?
Не всегда. Имеет значение и качество разработки программного обеспечения TCP. За долгие годы в различных реализациях TCP были диагностированы и решены многие проблемы производительности. Можно считать, что наилучшим будет программное обеспечение, соответствующее документу RFC 1122, в котором определены требования к коммуникационному уровню хостов Интернета.
Не менее важно исключение синдрома "бестолкового окна" и применение алгоритмов Джекобсона, Керна и Партриджа (эти интересные алгоритмы будут рассмотрены ниже).
Разработчики программного обеспечения могут получить существенные выгоды, создавая программы, исключающие ненужные пересылки небольших объемов данных и имеющие встроенные таймеры для освобождения сетевых ресурсов, не используемых в текущий момент.
10.13 Алгоритмы повышения производительности
Переходя к знакомству с достаточно сложной частью TCP, мы рассмотрим механизмы повышения производительности и решения проблем снижений пропускной способности. В этом разделе обсуждаются следующие проблемы:
■ Медленный старт (slow start) мешает использованию большой доли сетевого трафика для нового сеанса, что может привести к непроизводительным потерям.
■ Излечение от синдрома "бестолкового окна" (silly window syndrome) предохраняет плохо разработанные приложения от перегрузки сети сообщениями.
■ Задержанный ACK (delayed ACK) снижает перегрузку посредством сокращения количества независимых сообщений подтверждения пересылки данных.
■ Вычисляемый тайм-аут повторной пересылки (computing retransmission timeout) основывается на согласовании реального времени сеанса, уменьшая объем ненужных повторных пересылок, но при этом не вызывает больших задержек для реально необходимых обменов данными.
■ Торможение пересылки TCP при перегрузках в сети позволяет маршрутизаторам вернуться в исходный режим и совместно использовать сетевые ресурсы для всех сеансов.
■ Отправка дублированных ACK (duplicate ACK) при получении сегмента вне последовательности отправки позволяет партнерам выполнить повторную пересылку до наступления тайм-аута.
10.13.1 Медленный старт
Если дома одновременно включить все бытовые электроприборы, произойдет перегрузка электрической сети. В компьютерных сетях медленный старт не позволяет перегореть сетевым предохранителям.
Новое соединение, мгновенно запускающее пересылку большого объема данных в уже и так нагруженной сети, может привести к проблемам. Идея медленного старта заключается в обеспечении новому соединению успешного запуска с медленным увеличением скорости пересылки данных в соответствии с реальной нагрузкой на сеть. Отправитель ограничивается размером нагрузочного окна, а не большим по размеру приемным окном.
Нагрузочное окно (congestion window) начинается с размера в 1 сегмент. Для каждого сегмента с успешно полученным ACK размер нагрузочного окна увеличивается на 1 сегмент, пока оно остается меньше, чем приемное окно. Если сеть не перегружена, нагрузочное окно постепенно достигнет размера приемного окна. При нормальном состоянии пересылки размеры этих окон будут совпадать.
Отметим, что медленный старт — не такой уж и медленный. После первого ACK размер нагрузочного окна равен 2-м сегментам, а после успешного получения ACK для двух сегментов размер может увеличиться до 8 сегментов. Другими словами, размер окна увеличивается экспоненциально.
Предположим, что вместо получения ACK возникла ситуация тайм-аута. Поведение нагрузочного окна в таком случае рассматривается ниже.
10.13.2 Синдром "бестолкового окна"
В первых реализациях TCP/IP разработчики столкнулись с феноменом синдрома "бестолкового окна" (Silly Window Syndrome — SWS), который проявлялся достаточно часто. Для понимания происходящих событий рассмотрим следующий сценарий, приводящий к нежелательным последствиям, но вполне возможный:
1. Передающее приложение быстро отсылает данные.
2. Принимающее приложение читает из входного буфера по 1 байту данных (т.е. медленно).
3. Входной буфер после чтения быстро заполняется.
4. Принимающее приложение читает 1 байт, и TCP отправляет ACK, означающий "Я имею свободное место для 1 байта данных".
5. Передающее приложение отправляет по сети пакет TCP из 1 байта.
6. Принимающий TCP посылает ACK, означающий "Спасибо. Я получил пакет и не имею больше свободного места".
Читать дальшеИнтервал:
Закладка: