Олег Цилюрик - QNX/UNIX: Анатомия параллелизма
- Название:QNX/UNIX: Анатомия параллелизма
- Автор:
- Жанр:
- Издательство:Символ-Плюс
- Год:2006
- Город:Санкт-Петербург
- ISBN:5-93286-088-Х
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Олег Цилюрик - QNX/UNIX: Анатомия параллелизма краткое содержание
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.
QNX/UNIX: Анатомия параллелизма - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
• главный поток (TID = 1) создает 3 новых потока (TID = 2, 3, 4);
• главный поток переходит в пассивное ожидание сигналов, но в его маске доставка посылаемого сигнала (41) заблокирована;
• выполнение функции потока начинается с разблокирования ожидаемого сигнала;
• … 3 потока (TID = 2, 3, 4) ожидают поступления сигнала;
• при поступлении серии сигналов вся их очередь доставляется и обрабатывается одним потоком с TID = 4, который тут же в цикле возвращается к ожиданию следующих сигналов.
Таким образом, сигнал доставляется одному и только одному потоку, который не блокирует этот сигнал. Обработчик сигнала вызывается в контексте (стек, области собственных данных) этого потока. После выполнения обработчика сигнал поглощается. Какому из потоков, находящихся в состоянии блокирования в ожидании сигналов (в масках которых разблокирован данный сигнал), будет доставлен экземпляр сигнала, предсказать невозможно; это так и должно быть исходя из общих принципов диспетчеризации потоков. Но реально этим потоком является поток, последнимперешедший в состояние ожидания. Для того чтобы убедиться в этом, заменим предпоследнюю строку программы ( pause();
) на:
threadfunc(NULL);
Теперь у нас 4 равнозначных потока, ожидающих прихода сигнала, переходящих в состояние ожидания в последовательности: TID = 2, 3, 4, 1. Реакция процесса на приход сигнала изменится на:
SIG = 41, TID = 1
Изменим текст функции потока на ( файл s7.cc ):
void* threadfunc(void* data) {
while (true) {
SignalProcmask(0, 0, SIG_UNBLOCK, &sig, NULL);
delay(1);
SignalProcmask(0, 0, SIG_BLOCK, &sig, NULL);
delay(10);
}
}
Поведение приложения радикально изменится — происходит смена обрабатывающего потока (чтобы сократить объем вывода, серии посылаемых сигналов состоят из одного сигнала). Следует отметить, что смена обрабатывающего потока происходит между сериями, но ни в коем случае не внутри длинных серий, что можно проследить экспериментально.
SIG = 41, TID = 1
SIG = 41; TID = 4
SIG = 41; TID = 4
SIG = 41; TID = 1
SIG = 41; TID = 1
SIG = 41; TID = 4
SIG = 41; TID = 4
SIG = 41; TID = 1
SIG = 41; TID = 2
SIG = 41; TID = 2
SIG = 41; TID = 3
SIG = 41; TID = 4
Такая модель вряд ли может быть названа в полной мере «сигналами в потоках», так как сигнал в ней в конечном итоге направляется процессу как контейнеру, содержащему потоки (можно сказать и так: в оболочку адресного пространства процесса). И только после этого в контексте одного из потоков(и в случае множественных потоков, разблокированных на обработку единого сигнала, невозможно предсказать, в контексте какого из них) выполняется обработчик сигнала. Главный поток процесса (TID = 1) в этой схеме участвует в равнозначном качестве (здесь хорошо видно, что устоявшееся понятие «реакция процесса на сигнал» в строгом смысле некорректно).
Перейдем к более конкретным вопросам: как можно продуктивно использовать эту схему в многопоточных приложениях? Рассмотрим сначала случай, когда каждый из рабочих потоков разблокирован на получение одного, свойственного только ему сигнала ( файл s9.cc ):
#include
#include
#include
#include
#include
#include
#include
static void handler(int signo, siginfo_t* info, void* context) {
cout << "SIG = " << signo << "; TID = " << pthread_self() << endl;
}
void* threadfunc(void* data) {
// блокировать реакцию на все сигналы
sigset_t sig;
sigfillset(&sig);
SignalProcmask(0, 0, SIG_BLOCK, &sig, NULL);
// разблокировать реакцию на свой сигнал
sigemptyset(&sig);
sigaddset(&sig, (int)data);
SignalProcmask(0, 0, SIG_UNBLOCK, &sig, NULL);
// цикл ожидания приходящих сигналов
while (true) pause();
}
int main() {
// для обработки всей группы сигналов управления потоками используем
// единую функцию реакции, иначе все было бы гораздо проще.
struct sigaction act;
sigemptyset(&act.sa_mask);
act.sa_sigaction = handler;
act.sa_flags = SA_SIGINFO;
// создаем группу однотипных потоков
const int thrnum = 3;
for (int i = SIGRTMIN; i - SIGRTMIN < thrnum; i++) {
sigset_t sig;
sigemptyset(&sig);
sigaddset(&sig, 1);
// нам нужно, чтобы главный поток не реагировал:
sigprocmask(SIG_BLOCK, &sig, NULL);
if (sigaction(i, &act, NULL) < 0) perror("set signal handler: ");
// для передачи номера сигнала используется
// трюк с подменой типа параметра:
pthread_create(NULL, NULL, threadfunc, (void*)(i));
}
// начинаем циклическую синхронизацию потоков.
for (int i = 0; ; i++) {
sleep(1);
// посылку сигнала можно (так даже будет корректнее)
// сделать так:
// union sigval val;
// val.sival_int = i;
// sigqueue(getpid(), SIGRTMIN + i % thrnum, val);
// но мы сознательно демонстрируем и приемлемость kill:
kill(getpid(), SIGRTMIN + i % thrnum);
}
}
В этой программе главный поток циклически по таймеру активизирует поочередно каждый поток. Вот фрагмент вывода работающей программы:
SIG = 41; TID = 2
SIG = 42; TID = 3
SIG = 43; TID = 4
SIG = 41; TID = 2
SIG = 42; TID = 3
SIG = 43; TID = 4
SIG = 41; TID = 2
SIG = 42; TID = 3
SIG = 43; TID = 4
Часто приходится слышать: «…хотелось бы доставить сигнал всем потокам, уведомить всех потребителей и выполнить функцию реакции в каждом потоке…», и именно в такой последовательности действий понимается модель сигналов в потоках при поверхностном с ней ознакомлении. Иногда это представляется очень интересной возможностью, и мы реализуем такую схему взаимодействия в следующем фрагменте ( файл s10.cc ):
#include
#include
#include
#include
#include
#include
#include
static void handler(int signo, siginfo_t* info, void* context) {
cout << "SIG = " << signo << ", TID = " << pthread_self() << endl;
}
static void endhandler(int signo) {}
// сигнал, на который реагируют потоки:
const int SIGNUM = SIGRTMIN;
sigset_t sig;
struct threcord {
int tid;
bool noblock;
};
static vector tharray; // вектор состояний потоков
void* threadfunc(void* data) {
// блокирование всех прочих сигналов:
sigset_t sigall;
sigfillset(&sigall);
SignalProcmask(0, 0, SIG_BLOCK, &sigall, NULL);
// передеспетчеризация для завершения формирования вектора
sched_yield();
tharray[(int)data].noblock =
(SignalProcmask(0, 0, SIG_UNBLOCK, &sig, NULL) != -1);
while (true) {
pause();
tharray[(int)data].noblock =
!(SignalProcmask(0, 0, SIG_BLOCK, &sig, NULL) != 1);
bool nolast = false;
for (vector::iterator i = tharray.begin();
i != tharray.end(); i++)
Интервал:
Закладка: