Олег Цилюрик - QNX/UNIX: Анатомия параллелизма
- Название:QNX/UNIX: Анатомия параллелизма
- Автор:
- Жанр:
- Издательство:Символ-Плюс
- Год:2006
- Город:Санкт-Петербург
- ISBN:5-93286-088-Х
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Олег Цилюрик - QNX/UNIX: Анатомия параллелизма краткое содержание
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.
QNX/UNIX: Анатомия параллелизма - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
if (nolast = i->noblock) break;
// последовательная пересылка сигнала следующему потоку
if (nolast) kill(getpid(), SIGNUM);
// ... когда пересылать больше некому -
// переинициализация масок
else
for (vector::iterator i = tharray.begin();
i != tharray.end(); i++)
i->noblock = (SignalProcmask(0, i->tid, SIG_UNBLOCK, &sig, NULL) != -1);
}
}
int main() {
// переопределение реакции ^C в старой манере
signal(SIGINT, endhandler);
// маска блокирования-разблокирования
sigemptyset(&sig);
sigaddset(&sig, SIGNUM);
// блокировка в главном потоке приложения
sigprocmask(SIG_BLOCK, &sig, NULL);
cout << "Process " << getpid() << ", waiting for signal " << SIGNUM << endl;
// установка обработчика (для дочерних потоков)
struct sigaction act;
act.sa_mask = sig;
act.sa_sigaction = handler;
act.sa_flags = SA_SIGINFO;
if (sigaction(SIGNUM, &act, NULL) < 0) perror("set signal handler: ");
const int thrnum = 3;
for (int i = 0; i < thrnum; i++) {
threcord threc = { 0, false };
pthread_create(&threc.tid, NULL, threadfunc, (void*)i);
tharray.push_back(three);
}
pause();
// сюда мы попадаем после ^C для завершающих операций...
tharray.erase(tharray.begin(), tharray.end());
cout << "Clean vector" << endl;
}
Это приложение, в отличие от предыдущих, построено уже с использованием специфики С++, в нем используется контейнерный класс vector
из библиотеки STL (Standard Template Library). Может быть множество вариаций на подобную тему. Приведенное нами приложение (как одна из вариаций) только подтверждает, что принятая в QNX модель достаточна для описания самых неожиданных потребностей. Логика работы приложения крайне проста: получая сигнал, поток блокирует повторную реакцию на этот сигнал, после чего возбуждает дубликат полученного сигнала от своего имени.
Показанное приложение в значительной степени искусственно и неэффективно. Мы приводим его здесь не как образец того, «как нужно делать», а только как иллюстрацию гибкости возможностей, предоставляемых в области параллельного программирования. При некоторой изобретательности можно заставить программу вести себя согласно вашим капризам, какими бы изощренными они ни оказались.
Запускаем полученное приложение:
# s10
Process 2089006, waiting for signal 41
После чего с другого терминала пошлем приложению ожидаемый им сигнал, например командой:
# kill -41 2089006
Посылаем этот сигнал несколько раз (в данном случае 3) и получаем вывод от приложения:
SIG = 41; TID = 4
SIG = 41; TID = 2
SIG = 41; TID = 3
SIG = 41; TID = 3
SIG = 41; TID = 4
SIG = 41; TID = 2
SIG = 41; TID = 2
SIG = 41; TID = 3
SIG = 41; TID = 4
^C
Clean vector
Видно, что реакция на каждый сигнал возбуждается несколько раз (по числу потоков), каждый раз выполняясь в контексте разного потока (TID). Интересно и изменение порядка активизации потоков от сигнала к сигналу, то есть потоки в очереди ожидающих «перетасовываются» при поступлении каждого сигнала.
В приложение добавлена реакция на ^C (сигнал SIGINT
):
• начиная с некоторой сложности приложений, их завершению должна обязательно предшествовать некоторая последовательность действий; в данном случае мы условно показываем очистку вектора состояний потоков;
• реакция на SIGINT
выполнена в «ненадежной» манере в смешении с моделью очереди сигналов для SIGRTMIN
, что показывает возможность смешанного применения всех моделей в рамках одного приложения; все определяется требованиями и вопросами удобства.
Как мы уже видели, тот факт, что обработчик сигнала выполняется в контексте потока, который разблокировал реакцию на этот сигнал (независимо от того, в момент выполнения какого потока приходит сигнал), позволяет реализовать в обработчике сигнала обработку любой сложности в интересах этого потока. Для этого лишь требуется разместить все области данных, запрашиваемые в этой обработке, не в стеке потока (объявленные как локальные переменные потоковой функции), а в области собственных данных потока, которые мы детально рассмотрели ранее. Схематично это можно показать в коде так:
• Положим, нам нужно уведомлять о некоторых событиях N потоков.
Будем использовать для этого сигналы SIGRTMIN
… SIGRTMIN + (N - 1)
:
for (int i = SIGRTMIN, i < SIGRTMIN + N; i++) {
pthread_create(NULL, NULL, threadfunc, (void*)(i));
}
• При запуске N
потоков (из главного потока) потоковые функции, помимо устанавливания своих индивидуальных сигнальных масок (в точности так, как это показано выше в листинге «Чередование потоковых сигналов»), размещают экземпляры собственных потоковых данных:
class DataBlock {
~DataBlock(void) {...}
};
static pthread_key_t key;
static pthread_once_t once = PTHREAD_ONCE_INIT;
static void destructor(void* db) { delete (DataBlock*)db; }
static void once_creator(void) {
pthread_key_create(&key, destructor);
}
void* threadfunc(void* data) {
// надлежащим образом маскируем сигналы
// ...
// это произойдет только в первом потоке из N
pthread_once(&once, once_creator);
DataBlock* pdb = new DataBlock(...);
pthread_setspecific(key, pdb);
// Теперь поток может пользоваться данными *pdb, как и локальными!
// цикл ожидания приходящих сигналов:
while (true) pause();
}
Все потоки используют один и тот же обработчик для всех сигналов; он выполняет одни и те же действия, но над различными объектами данных. Над каким объектом данных выполнить действие, обработчик «узнает» из контекста потока, в котором он выполняется:
static void handler(int signo, siginfo_t* info, void* context) {
DataBlock* pdb = (DataBlock*)pthread_getspecific(key);
// выполняем действия для своего потока ...
}
• Теперь, например из главного потока процесса (главный поток выбран для простоты - источником сигнала может быть произвольный поток, даже не этого процесса), требуемое действие вызывается возбуждением соответствующего сигнала:
sigqueue(getpid(), SIGRTMIN + K, val);
Это только скелетная схема, но на ее основе можно строить развитые протоколы обработки данных (пример взят из работоспособного приложения).
За пределы POSIX: сигналы в сети
А теперь, «на закуску», посмотрим справочную информацию по системной команде kill
(послать сигнал). Вы, должно быть, помните, что в QNX есть дополнительная возможность получить справку по любой команде системы, используя команду # use <���имя-команды>
. Более того, вы можете и в любое свое приложение встроить возможность получения интерактивной справки. Как это происходит, описано в [4]. Итак:
# use kill
kill - terminate or signal processes (POSIX)
kill [-signal_name|-signal_number] pid ...
Интервал:
Закладка: