Олег Цилюрик - QNX/UNIX: Анатомия параллелизма

Тут можно читать онлайн Олег Цилюрик - QNX/UNIX: Анатомия параллелизма - бесплатно ознакомительный отрывок. Жанр: comp-osnet, издательство Символ-Плюс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    QNX/UNIX: Анатомия параллелизма
  • Автор:
  • Жанр:
  • Издательство:
    Символ-Плюс
  • Год:
    2006
  • Город:
    Санкт-Петербург
  • ISBN:
    5-93286-088-Х
  • Рейтинг:
    4.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Олег Цилюрик - QNX/UNIX: Анатомия параллелизма краткое содержание

QNX/UNIX: Анатомия параллелизма - описание и краткое содержание, автор Олег Цилюрик, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.

В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.

QNX/UNIX: Анатомия параллелизма - читать онлайн бесплатно ознакомительный отрывок

QNX/UNIX: Анатомия параллелизма - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Олег Цилюрик
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(*context_alloc)(THREAD_POOL_HANDLE_T* handle);

void (*context_free)(THREAD_POOL_PARAM_T* ctp);

pthread_attr_t* attr;

unsigned short lo_water;

unsigned short increment;

unsigned short hi_water;

unsigned short maximum;

unsigned reserved[8];

} thread_pool_attr_t;

Дескриптор создаваемого пула потоков handle, посредством которого мы будем ссылаться на пул, является просто синонимом типа dispatch_t:

#ifndef THREAD_POOL_HANDLE_T

#define THREAD_POOL_HANDLE_T dispatch_t

#endif

Атрибуты потоков, которые будут работать в составе пула, определяются полем attrтипа pthread_attr_t(эту структуру мы детально рассматривали ранее при обсуждении создания единичных потоков).

Численные параметры пула определяют:

lo_water— «нижняя ватерлиния», минимальное число потоков пула, находящихся в блокированном состоянии (в ожидании активизации). Если в результате некоторого события один из ожидающих потоков переходит в состояние активной обработки и число оставшихся блокированных потоков становится меньше lo_water, создается дополнительно increment потоков, которые переводятся в блокированное состояние.

hi_water— максимальное число потоков, которые допустимо иметь в блокированном состоянии. Если после завершения обработки некоторым потоком число заблокированных потоков становится больше hi_water, то этот поток уничтожается.

maximum— общая верхняя граница числа потоков пула (активизированных и заблокированных). Даже если число заблокированных потоков (в пике активности) станет ниже lo_water, но общее число потоков уже достигнет maximum, то новые потоки для пула создаваться не будут.

Функциональные параметры пула определяют:

context_alloc()и context_free()— функции создания и уничтожения контекста потока, которые вызываются при создании и уничтожении каждого потока пула. Функция создания контекста потока ответственна за индивидуальные настройки создаваемого потока. Она возвращает «указатель на контекст» типа THREAD_POOL_PARAM_T. Однако системе такой тип неизвестен:

#ifndef THREAD_POOL_PARAM_T

#define THREAD_POOL_PARAM_T void

#endif

В качестве контекста может использоваться любой пользовательский тип, и он будет передаваться последовательно в качестве параметра ( ctp) во все последующие функции обслуживания потока.

block_func()— функция блокирования, которая вызывается в потоке сразу же после context_alloc()или после очередного этапа выполнения потоком функции обработчика handler_func(). Функция блокирования получает и возвращает далее обработчику (возможно, после модификации) структуру контекста (в приведенном выше примере контекстом является int — значение присоединенного TCP-сокета).

handler_func()— это, собственно, и есть аналог потоковой функции, в которой выполняется вся полезная работа потока. Функция вызывается библиотекой после выхода потока из блокирующей функции block_func(), при этом функция-обработчик handler_func()получит параметр контекста, возвращенный block_func().

Примечание

В текущей реализации handler_func()должна возвращать 0; все другие значения зарезервированы для дальнейших расширений. Аналогично определенная в атрибутной записи функция unblock_func()зарезервирована для дальнейших расширений, и вместо ее адреса следует устанавливать NULL.

2. После создания атрибутной записи пула, определяющей всю функциональность его дальнейшего поведения, можно приступать к непосредственному созданию пула потоков:

thread_pool_t* thread_pool_create(

thread_pool_attr_t* attr, unsigned flags);

где attr— подробно рассмотренная (и созданная) ранее атрибутная запись пула;

flags— флаг, определяющий поведение вызывающего потока после последующего вызова thread_pool_start(). В документации описано два возможных значения флага:

POOL_FLAG_EXIT_SELF— после старта пула поток, вызвавший thread_pool_start()(часто это главный поток приложения), завершается;

POOL_FLAG_USE_SELF— после старта пула поток, вызвавший thread_pool_start(), включается в пул в качестве одного из его потоков.

И в том и в другом случае в типовом фрагменте (как и в показанном выше примере):

thread_pool_start(tpp);

exit(EXIT_SUCCESS);

управление никогда не дойдет до выполнения exit(). Но существует еще третье допустимое значение, прямо не указанное в документации, но мельком упоминаемое в других местах документации:

0— после старта пула поток, вызвавший thread_pool_start(), продолжает свое естественное выполнение.

Например, некоторый фрагмент кода мог бы выглядеть так:

thread_pool_attr_t att; // ...

thread_pool_t *tpp = thread_pool_create(&attr, 0);

thread_pool_start(tpp);

while (true) {

// выполнять некоторую отличную от пула работу

}

exit(EXIT_SUCCESS);

Как уже понятно из описаний, thread_pool_create()возвращает указатель на управляющую структуру пула потоков, которая позже будет передана thread_pool_start(). Если создание пула завершилось неудачей, то результатом выполнения будет NULL, а в errnoбудет установлен код ошибки (документацией предусмотрен только один код ошибки: ENOMEM— недостаточно памяти для размещения структур данных).

Примечание

Управляющая структура пула потоков описана так:

typedef struct _thread_pool thread_pool_t;

struct _thread_pool {

thread_pool_attr_t pool_attr;

unsigned created;

unsigned waiting;

unsigned flags;

unsigned reserved[3];

};

3. Последний шаг в процедуре запуска пула потоков:

int thread_pool_start(void* pool);

где pool— это указатель, возвращаемый thread_pool_create(). [40] Вы спросите, почему указатель, возвращаемый thread_pool_create() , имеет тип thread_pool_t* , а получающий его параметр thread_pool_start() определен как void* ? Это или неаккуратность разработчиков QNX, или глубокая сермяжная правда, которую мы пока не понимаем.

При успешном завершении (которого почти никогда не происходит, за исключением значения флага 0; об этом см. выше) функция возвращает EOK, в противном случае (что происходит гораздо чаще) — значение -1.

4. Другие, относящиеся к библиотеке динамического пула потоков функции, которые целесообразно посмотреть в документации QNX (но которые в силу различных обстоятельств используются гораздо реже):

int thread_pool_destroy(thread_pool_t* pool);

int thread_pool_control(thread_pool_t* pool, thread_pool_attr_t* attr,

_Uint16t lower, _Uint16t upper, unsigned flags);

int thread_pool_limits(thread_pool_t* pool,

int lowater, int hiwater, int maximum, int increment, unsigned flags);

Менеджеры ресурсов

QNX вводит технику программирования, которая единообразно проходит сквозь всю систему. [41] Эта техника возникла не «сразу» и не случайно: ее идеология практически сложилась за почти 20 лет развития системы QNX, но не была представлена в виде формальных механизмов. В QNX 6.X оставалось только придать ей формальный вид и обеспечить ее поддержание написанием специальных библиотек. Идея техники менеджеров ресурсов столь же проста, сколь и остроумна:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Олег Цилюрик читать все книги автора по порядку

Олег Цилюрик - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




QNX/UNIX: Анатомия параллелизма отзывы


Отзывы читателей о книге QNX/UNIX: Анатомия параллелизма, автор: Олег Цилюрик. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x